MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinr Structured version   Visualization version   GIF version

Theorem 1stinr 9948
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)

Proof of Theorem 1stinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 9922 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 opeq2 4855 . . . 4 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
3 elex 3485 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5444 . . . . 5 ⟨1o, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 7014 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
76fveq2d 6885 . 2 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘⟨1o, 𝑋⟩))
8 1oex 8495 . . 3 1o ∈ V
9 op1stg 8005 . . 3 ((1o ∈ V ∧ 𝑋𝑉) → (1st ‘⟨1o, 𝑋⟩) = 1o)
108, 9mpan 690 . 2 (𝑋𝑉 → (1st ‘⟨1o, 𝑋⟩) = 1o)
117, 10eqtrd 2771 1 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cfv 6536  1st c1st 7991  1oc1o 8478  inrcinr 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-suc 6363  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-1o 8485  df-inr 9922
This theorem is referenced by:  updjudhcoinrg  9952
  Copyright terms: Public domain W3C validator