MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinr Structured version   Visualization version   GIF version

Theorem 1stinr 9618
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)

Proof of Theorem 1stinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 9592 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 opeq2 4802 . . . 4 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
3 elex 3440 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5373 . . . . 5 ⟨1o, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6880 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
76fveq2d 6760 . 2 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘⟨1o, 𝑋⟩))
8 1oex 8280 . . 3 1o ∈ V
9 op1stg 7816 . . 3 ((1o ∈ V ∧ 𝑋𝑉) → (1st ‘⟨1o, 𝑋⟩) = 1o)
108, 9mpan 686 . 2 (𝑋𝑉 → (1st ‘⟨1o, 𝑋⟩) = 1o)
117, 10eqtrd 2778 1 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  1st c1st 7802  1oc1o 8260  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-1o 8267  df-inr 9592
This theorem is referenced by:  updjudhcoinrg  9622
  Copyright terms: Public domain W3C validator