![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrresf | Structured version Visualization version GIF version |
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
inrresf | ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djurf1o 9956 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
2 | f1ofun 6845 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → Fun inr) | |
3 | ffvresb 7139 | . . 3 ⊢ (Fun inr → ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
5 | elex 3482 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ V) | |
6 | opex 5470 | . . . . 5 ⊢ 〈1o, 𝑥〉 ∈ V | |
7 | df-inr 9946 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
8 | 6, 7 | dmmpti 6705 | . . . 4 ⊢ dom inr = V |
9 | 5, 8 | eleqtrrdi 2837 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr) |
10 | djurcl 9954 | . . 3 ⊢ (𝑥 ∈ 𝐵 → (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
11 | 9, 10 | jca 510 | . 2 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
12 | 4, 11 | mprgbir 3058 | 1 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 {csn 4633 〈cop 4639 × cxp 5680 dom cdm 5682 ↾ cres 5684 Fun wfun 6548 ⟶wf 6550 –1-1-onto→wf1o 6553 ‘cfv 6554 1oc1o 8489 ⊔ cdju 9941 inrcinr 9943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-om 7877 df-1st 8003 df-2nd 8004 df-1o 8496 df-dju 9944 df-inr 9946 |
This theorem is referenced by: inrresf1 9960 updjudhcoinrg 9976 updjud 9977 |
Copyright terms: Public domain | W3C validator |