MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf Structured version   Visualization version   GIF version

Theorem inrresf 9913
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inrresf (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)

Proof of Theorem inrresf
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 djurf1o 9910 . . 3 inr:V–1-1-ontoβ†’({1o} Γ— V)
2 f1ofun 6835 . . 3 (inr:V–1-1-ontoβ†’({1o} Γ— V) β†’ Fun inr)
3 ffvresb 7126 . . 3 (Fun inr β†’ ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡))))
41, 2, 3mp2b 10 . 2 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡)))
5 elex 3492 . . . 4 (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ V)
6 opex 5464 . . . . 5 ⟨1o, π‘₯⟩ ∈ V
7 df-inr 9900 . . . . 5 inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
86, 7dmmpti 6694 . . . 4 dom inr = V
95, 8eleqtrrdi 2844 . . 3 (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ dom inr)
10 djurcl 9908 . . 3 (π‘₯ ∈ 𝐡 β†’ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡))
119, 10jca 512 . 2 (π‘₯ ∈ 𝐡 β†’ (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡)))
124, 11mprgbir 3068 1 (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  {csn 4628  βŸ¨cop 4634   Γ— cxp 5674  dom cdm 5676   β†Ύ cres 5678  Fun wfun 6537  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  1oc1o 8461   βŠ” cdju 9895  inrcinr 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-dju 9898  df-inr 9900
This theorem is referenced by:  inrresf1  9914  updjudhcoinrg  9930  updjud  9931
  Copyright terms: Public domain W3C validator