| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrresf | Structured version Visualization version GIF version | ||
| Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| inrresf | ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1o 9866 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 2 | f1ofun 6802 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → Fun inr) | |
| 3 | ffvresb 7097 | . . 3 ⊢ (Fun inr → ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 5 | elex 3468 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ V) | |
| 6 | opex 5424 | . . . . 5 ⊢ 〈1o, 𝑥〉 ∈ V | |
| 7 | df-inr 9856 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6662 | . . . 4 ⊢ dom inr = V |
| 9 | 5, 8 | eleqtrrdi 2839 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr) |
| 10 | djurcl 9864 | . . 3 ⊢ (𝑥 ∈ 𝐵 → (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 12 | 4, 11 | mprgbir 3051 | 1 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 {csn 4589 〈cop 4595 × cxp 5636 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 1oc1o 8427 ⊔ cdju 9851 inrcinr 9853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-dju 9854 df-inr 9856 |
| This theorem is referenced by: inrresf1 9870 updjudhcoinrg 9886 updjud 9887 |
| Copyright terms: Public domain | W3C validator |