MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf Structured version   Visualization version   GIF version

Theorem inrresf 9860
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inrresf (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)

Proof of Theorem inrresf
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 djurf1o 9857 . . 3 inr:V–1-1-ontoβ†’({1o} Γ— V)
2 f1ofun 6790 . . 3 (inr:V–1-1-ontoβ†’({1o} Γ— V) β†’ Fun inr)
3 ffvresb 7076 . . 3 (Fun inr β†’ ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡))))
41, 2, 3mp2b 10 . 2 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡)))
5 elex 3465 . . . 4 (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ V)
6 opex 5425 . . . . 5 ⟨1o, π‘₯⟩ ∈ V
7 df-inr 9847 . . . . 5 inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
86, 7dmmpti 6649 . . . 4 dom inr = V
95, 8eleqtrrdi 2845 . . 3 (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ dom inr)
10 djurcl 9855 . . 3 (π‘₯ ∈ 𝐡 β†’ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡))
119, 10jca 513 . 2 (π‘₯ ∈ 𝐡 β†’ (π‘₯ ∈ dom inr ∧ (inrβ€˜π‘₯) ∈ (𝐴 βŠ” 𝐡)))
124, 11mprgbir 3068 1 (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447  {csn 4590  βŸ¨cop 4596   Γ— cxp 5635  dom cdm 5637   β†Ύ cres 5639  Fun wfun 6494  βŸΆwf 6496  β€“1-1-ontoβ†’wf1o 6499  β€˜cfv 6500  1oc1o 8409   βŠ” cdju 9842  inrcinr 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1st 7925  df-2nd 7926  df-1o 8416  df-dju 9845  df-inr 9847
This theorem is referenced by:  inrresf1  9861  updjudhcoinrg  9877  updjud  9878
  Copyright terms: Public domain W3C validator