| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrresf | Structured version Visualization version GIF version | ||
| Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| inrresf | ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1o 9932 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 2 | f1ofun 6825 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → Fun inr) | |
| 3 | ffvresb 7120 | . . 3 ⊢ (Fun inr → ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 5 | elex 3485 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ V) | |
| 6 | opex 5444 | . . . . 5 ⊢ 〈1o, 𝑥〉 ∈ V | |
| 7 | df-inr 9922 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6687 | . . . 4 ⊢ dom inr = V |
| 9 | 5, 8 | eleqtrrdi 2846 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr) |
| 10 | djurcl 9930 | . . 3 ⊢ (𝑥 ∈ 𝐵 → (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 12 | 4, 11 | mprgbir 3059 | 1 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 {csn 4606 〈cop 4612 × cxp 5657 dom cdm 5659 ↾ cres 5661 Fun wfun 6530 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 1oc1o 8478 ⊔ cdju 9917 inrcinr 9919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1st 7993 df-2nd 7994 df-1o 8485 df-dju 9920 df-inr 9922 |
| This theorem is referenced by: inrresf1 9936 updjudhcoinrg 9952 updjud 9953 |
| Copyright terms: Public domain | W3C validator |