![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrresf | Structured version Visualization version GIF version |
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
inrresf | ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djurf1o 9982 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
2 | f1ofun 6864 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → Fun inr) | |
3 | ffvresb 7159 | . . 3 ⊢ (Fun inr → ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
5 | elex 3509 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ V) | |
6 | opex 5484 | . . . . 5 ⊢ 〈1o, 𝑥〉 ∈ V | |
7 | df-inr 9972 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
8 | 6, 7 | dmmpti 6724 | . . . 4 ⊢ dom inr = V |
9 | 5, 8 | eleqtrrdi 2855 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr) |
10 | djurcl 9980 | . . 3 ⊢ (𝑥 ∈ 𝐵 → (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
12 | 4, 11 | mprgbir 3074 | 1 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 {csn 4648 〈cop 4654 × cxp 5698 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 1oc1o 8515 ⊔ cdju 9967 inrcinr 9969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-dju 9970 df-inr 9972 |
This theorem is referenced by: inrresf1 9986 updjudhcoinrg 10002 updjud 10003 |
Copyright terms: Public domain | W3C validator |