MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf Structured version   Visualization version   GIF version

Theorem inrresf 9605
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inrresf (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)

Proof of Theorem inrresf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djurf1o 9602 . . 3 inr:V–1-1-onto→({1o} × V)
2 f1ofun 6702 . . 3 (inr:V–1-1-onto→({1o} × V) → Fun inr)
3 ffvresb 6980 . . 3 (Fun inr → ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) ↔ ∀𝑥𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴𝐵))))
41, 2, 3mp2b 10 . 2 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) ↔ ∀𝑥𝐵 (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴𝐵)))
5 elex 3440 . . . 4 (𝑥𝐵𝑥 ∈ V)
6 opex 5373 . . . . 5 ⟨1o, 𝑥⟩ ∈ V
7 df-inr 9592 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
86, 7dmmpti 6561 . . . 4 dom inr = V
95, 8eleqtrrdi 2850 . . 3 (𝑥𝐵𝑥 ∈ dom inr)
10 djurcl 9600 . . 3 (𝑥𝐵 → (inr‘𝑥) ∈ (𝐴𝐵))
119, 10jca 511 . 2 (𝑥𝐵 → (𝑥 ∈ dom inr ∧ (inr‘𝑥) ∈ (𝐴𝐵)))
124, 11mprgbir 3078 1 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wral 3063  Vcvv 3422  {csn 4558  cop 4564   × cxp 5578  dom cdm 5580  cres 5582  Fun wfun 6412  wf 6414  1-1-ontowf1o 6417  cfv 6418  1oc1o 8260  cdju 9587  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-dju 9590  df-inr 9592
This theorem is referenced by:  inrresf1  9606  updjudhcoinrg  9622  updjud  9623
  Copyright terms: Public domain W3C validator