MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndinr Structured version   Visualization version   GIF version

Theorem 2ndinr 9999
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinr (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)

Proof of Theorem 2ndinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 9972 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 opeq2 4898 . . . 4 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
3 elex 3509 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5484 . . . . 5 ⟨1o, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 7052 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
76fveq2d 6924 . 2 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘⟨1o, 𝑋⟩))
8 1oex 8532 . . 3 1o ∈ V
9 op2ndg 8043 . . 3 ((1o ∈ V ∧ 𝑋𝑉) → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
108, 9mpan 689 . 2 (𝑋𝑉 → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
117, 10eqtrd 2780 1 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cfv 6573  2nd c2nd 8029  1oc1o 8515  inrcinr 9969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031  df-1o 8522  df-inr 9972
This theorem is referenced by:  updjudhcoinrg  10002
  Copyright terms: Public domain W3C validator