MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndinr Structured version   Visualization version   GIF version

Theorem 2ndinr 9823
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinr (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)

Proof of Theorem 2ndinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 9796 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 opeq2 4823 . . . 4 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
3 elex 3457 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5402 . . . . 5 ⟨1o, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6952 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
76fveq2d 6826 . 2 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘⟨1o, 𝑋⟩))
8 1oex 8395 . . 3 1o ∈ V
9 op2ndg 7934 . . 3 ((1o ∈ V ∧ 𝑋𝑉) → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
108, 9mpan 690 . 2 (𝑋𝑉 → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
117, 10eqtrd 2766 1 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cfv 6481  2nd c2nd 7920  1oc1o 8378  inrcinr 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-suc 6312  df-iota 6437  df-fun 6483  df-fv 6489  df-2nd 7922  df-1o 8385  df-inr 9796
This theorem is referenced by:  updjudhcoinrg  9826
  Copyright terms: Public domain W3C validator