![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndinr | Structured version Visualization version GIF version |
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
2ndinr | β’ (π β π β (2nd β(inrβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9904 | . . . 4 β’ inr = (π₯ β V β¦ β¨1o, π₯β©) | |
2 | opeq2 4874 | . . . 4 β’ (π₯ = π β β¨1o, π₯β© = β¨1o, πβ©) | |
3 | elex 3492 | . . . 4 β’ (π β π β π β V) | |
4 | opex 5464 | . . . . 5 β’ β¨1o, πβ© β V | |
5 | 4 | a1i 11 | . . . 4 β’ (π β π β β¨1o, πβ© β V) |
6 | 1, 2, 3, 5 | fvmptd3 7021 | . . 3 β’ (π β π β (inrβπ) = β¨1o, πβ©) |
7 | 6 | fveq2d 6895 | . 2 β’ (π β π β (2nd β(inrβπ)) = (2nd ββ¨1o, πβ©)) |
8 | 1oex 8482 | . . 3 β’ 1o β V | |
9 | op2ndg 7992 | . . 3 β’ ((1o β V β§ π β π) β (2nd ββ¨1o, πβ©) = π) | |
10 | 8, 9 | mpan 687 | . 2 β’ (π β π β (2nd ββ¨1o, πβ©) = π) |
11 | 7, 10 | eqtrd 2771 | 1 β’ (π β π β (2nd β(inrβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 β¨cop 4634 βcfv 6543 2nd c2nd 7978 1oc1o 8465 inrcinr 9901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-suc 6370 df-iota 6495 df-fun 6545 df-fv 6551 df-2nd 7980 df-1o 8472 df-inr 9904 |
This theorem is referenced by: updjudhcoinrg 9934 |
Copyright terms: Public domain | W3C validator |