Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndinr | Structured version Visualization version GIF version |
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
2ndinr | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9592 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | opeq2 4802 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
3 | elex 3440 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
4 | opex 5373 | . . . . 5 ⊢ 〈1o, 𝑋〉 ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
6 | 1, 2, 3, 5 | fvmptd3 6880 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
7 | 6 | fveq2d 6760 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘〈1o, 𝑋〉)) |
8 | 1oex 8280 | . . 3 ⊢ 1o ∈ V | |
9 | op2ndg 7817 | . . 3 ⊢ ((1o ∈ V ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈1o, 𝑋〉) = 𝑋) | |
10 | 8, 9 | mpan 686 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈1o, 𝑋〉) = 𝑋) |
11 | 7, 10 | eqtrd 2778 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 2nd c2nd 7803 1oc1o 8260 inrcinr 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 df-1o 8267 df-inr 9592 |
This theorem is referenced by: updjudhcoinrg 9622 |
Copyright terms: Public domain | W3C validator |