MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndinr Structured version   Visualization version   GIF version

Theorem 2ndinr 9931
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinr (𝑋 ∈ 𝑉 β†’ (2nd β€˜(inrβ€˜π‘‹)) = 𝑋)

Proof of Theorem 2ndinr
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-inr 9904 . . . 4 inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
2 opeq2 4874 . . . 4 (π‘₯ = 𝑋 β†’ ⟨1o, π‘₯⟩ = ⟨1o, π‘‹βŸ©)
3 elex 3492 . . . 4 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ V)
4 opex 5464 . . . . 5 ⟨1o, π‘‹βŸ© ∈ V
54a1i 11 . . . 4 (𝑋 ∈ 𝑉 β†’ ⟨1o, π‘‹βŸ© ∈ V)
61, 2, 3, 5fvmptd3 7021 . . 3 (𝑋 ∈ 𝑉 β†’ (inrβ€˜π‘‹) = ⟨1o, π‘‹βŸ©)
76fveq2d 6895 . 2 (𝑋 ∈ 𝑉 β†’ (2nd β€˜(inrβ€˜π‘‹)) = (2nd β€˜βŸ¨1o, π‘‹βŸ©))
8 1oex 8482 . . 3 1o ∈ V
9 op2ndg 7992 . . 3 ((1o ∈ V ∧ 𝑋 ∈ 𝑉) β†’ (2nd β€˜βŸ¨1o, π‘‹βŸ©) = 𝑋)
108, 9mpan 687 . 2 (𝑋 ∈ 𝑉 β†’ (2nd β€˜βŸ¨1o, π‘‹βŸ©) = 𝑋)
117, 10eqtrd 2771 1 (𝑋 ∈ 𝑉 β†’ (2nd β€˜(inrβ€˜π‘‹)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βŸ¨cop 4634  β€˜cfv 6543  2nd c2nd 7978  1oc1o 8465  inrcinr 9901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-suc 6370  df-iota 6495  df-fun 6545  df-fv 6551  df-2nd 7980  df-1o 8472  df-inr 9904
This theorem is referenced by:  updjudhcoinrg  9934
  Copyright terms: Public domain W3C validator