| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndinr | Structured version Visualization version GIF version | ||
| Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 2ndinr | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 9796 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | opeq2 4823 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
| 3 | elex 3457 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 4 | opex 5402 | . . . . 5 ⊢ 〈1o, 𝑋〉 ∈ V | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
| 6 | 1, 2, 3, 5 | fvmptd3 6952 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘〈1o, 𝑋〉)) |
| 8 | 1oex 8395 | . . 3 ⊢ 1o ∈ V | |
| 9 | op2ndg 7934 | . . 3 ⊢ ((1o ∈ V ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈1o, 𝑋〉) = 𝑋) | |
| 10 | 8, 9 | mpan 690 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈1o, 𝑋〉) = 𝑋) |
| 11 | 7, 10 | eqtrd 2766 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ‘cfv 6481 2nd c2nd 7920 1oc1o 8378 inrcinr 9793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 df-1o 8385 df-inr 9796 |
| This theorem is referenced by: updjudhcoinrg 9826 |
| Copyright terms: Public domain | W3C validator |