Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndinr | Structured version Visualization version GIF version |
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
2ndinr | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9661 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | opeq2 4805 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
3 | elex 3450 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
4 | opex 5379 | . . . . 5 ⊢ 〈1o, 𝑋〉 ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
6 | 1, 2, 3, 5 | fvmptd3 6898 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
7 | 6 | fveq2d 6778 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘〈1o, 𝑋〉)) |
8 | 1oex 8307 | . . 3 ⊢ 1o ∈ V | |
9 | op2ndg 7844 | . . 3 ⊢ ((1o ∈ V ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈1o, 𝑋〉) = 𝑋) | |
10 | 8, 9 | mpan 687 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈1o, 𝑋〉) = 𝑋) |
11 | 7, 10 | eqtrd 2778 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 2nd c2nd 7830 1oc1o 8290 inrcinr 9658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-suc 6272 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 df-1o 8297 df-inr 9661 |
This theorem is referenced by: updjudhcoinrg 9691 |
Copyright terms: Public domain | W3C validator |