MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurf1o Structured version   Visualization version   GIF version

Theorem djurf1o 9842
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djurf1o inr:V–1-1-onto→({1o} × V)

Proof of Theorem djurf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inr 9832 . . 3 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 1onn 8581 . . . . . 6 1o ∈ ω
3 snidg 4620 . . . . . 6 (1o ∈ ω → 1o ∈ {1o})
42, 3ax-mp 5 . . . . 5 1o ∈ {1o}
5 opelxpi 5668 . . . . 5 ((1o ∈ {1o} ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
64, 5mpan 690 . . . 4 (𝑥 ∈ V → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
76adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
8 fvexd 6855 . . 3 ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd𝑦) ∈ V)
9 1st2nd2 7986 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 7979 . . . . . . . . . 10 (𝑦 ∈ ({1o} × V) → (1st𝑦) ∈ {1o})
11 elsni 4602 . . . . . . . . . 10 ((1st𝑦) ∈ {1o} → (1st𝑦) = 1o)
1210, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ({1o} × V) → (1st𝑦) = 1o)
1312opeq1d 4839 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨1o, (2nd𝑦)⟩)
149, 13eqtrd 2764 . . . . . . 7 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨1o, (2nd𝑦)⟩)
1514eqeq2d 2740 . . . . . 6 (𝑦 ∈ ({1o} × V) → (⟨1o, 𝑥⟩ = 𝑦 ↔ ⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩))
16 eqcom 2736 . . . . . 6 (⟨1o, 𝑥⟩ = 𝑦𝑦 = ⟨1o, 𝑥⟩)
17 eqid 2729 . . . . . . 7 1o = 1o
18 1oex 8421 . . . . . . . 8 1o ∈ V
19 vex 3448 . . . . . . . 8 𝑥 ∈ V
2018, 19opth 5431 . . . . . . 7 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ (1o = 1o𝑥 = (2nd𝑦)))
2117, 20mpbiran 709 . . . . . 6 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2215, 16, 213bitr3g 313 . . . . 5 (𝑦 ∈ ({1o} × V) → (𝑦 = ⟨1o, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2322bicomd 223 . . . 4 (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
2423ad2antll 729 . . 3 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
251, 7, 8, 24f1o2d 7623 . 2 (⊤ → inr:V–1-1-onto→({1o} × V))
2625mptru 1547 1 inr:V–1-1-onto→({1o} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   × cxp 5629  1-1-ontowf1o 6498  cfv 6499  ωcom 7822  1st c1st 7945  2nd c2nd 7946  1oc1o 8404  inrcinr 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-inr 9832
This theorem is referenced by:  inrresf  9845  inrresf1  9846  djuin  9847  djuun  9855
  Copyright terms: Public domain W3C validator