Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djurf1o | Structured version Visualization version GIF version |
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djurf1o | ⊢ inr:V–1-1-onto→({1o} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9592 | . . 3 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1onn 8432 | . . . . . 6 ⊢ 1o ∈ ω | |
3 | snidg 4592 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ {1o}) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ {1o} |
5 | opelxpi 5617 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) | |
6 | 4, 5 | mpan 686 | . . . 4 ⊢ (𝑥 ∈ V → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
8 | fvexd 6771 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd ‘𝑦) ∈ V) | |
9 | 1st2nd2 7843 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
10 | xp1st 7836 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) ∈ {1o}) | |
11 | elsni 4575 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {1o} → (1st ‘𝑦) = 1o) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) = 1o) |
13 | 12 | opeq1d 4807 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈1o, (2nd ‘𝑦)〉) |
14 | 9, 13 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈1o, (2nd ‘𝑦)〉) |
15 | 14 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 ∈ ({1o} × V) → (〈1o, 𝑥〉 = 𝑦 ↔ 〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉)) |
16 | eqcom 2745 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈1o, 𝑥〉) | |
17 | eqid 2738 | . . . . . . 7 ⊢ 1o = 1o | |
18 | 1oex 8280 | . . . . . . . 8 ⊢ 1o ∈ V | |
19 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
20 | 18, 19 | opth 5385 | . . . . . . 7 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ (1o = 1o ∧ 𝑥 = (2nd ‘𝑦))) |
21 | 17, 20 | mpbiran 705 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
22 | 15, 16, 21 | 3bitr3g 312 | . . . . 5 ⊢ (𝑦 ∈ ({1o} × V) → (𝑦 = 〈1o, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
23 | 22 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
24 | 23 | ad2antll 725 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
25 | 1, 7, 8, 24 | f1o2d 7501 | . 2 ⊢ (⊤ → inr:V–1-1-onto→({1o} × V)) |
26 | 25 | mptru 1546 | 1 ⊢ inr:V–1-1-onto→({1o} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 × cxp 5578 –1-1-onto→wf1o 6417 ‘cfv 6418 ωcom 7687 1st c1st 7802 2nd c2nd 7803 1oc1o 8260 inrcinr 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-inr 9592 |
This theorem is referenced by: inrresf 9605 inrresf1 9606 djuin 9607 djuun 9615 |
Copyright terms: Public domain | W3C validator |