MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurf1o Structured version   Visualization version   GIF version

Theorem djurf1o 9982
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djurf1o inr:V–1-1-onto→({1o} × V)

Proof of Theorem djurf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inr 9972 . . 3 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 1onn 8696 . . . . . 6 1o ∈ ω
3 snidg 4682 . . . . . 6 (1o ∈ ω → 1o ∈ {1o})
42, 3ax-mp 5 . . . . 5 1o ∈ {1o}
5 opelxpi 5737 . . . . 5 ((1o ∈ {1o} ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
64, 5mpan 689 . . . 4 (𝑥 ∈ V → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
76adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
8 fvexd 6935 . . 3 ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd𝑦) ∈ V)
9 1st2nd2 8069 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 8062 . . . . . . . . . 10 (𝑦 ∈ ({1o} × V) → (1st𝑦) ∈ {1o})
11 elsni 4665 . . . . . . . . . 10 ((1st𝑦) ∈ {1o} → (1st𝑦) = 1o)
1210, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ({1o} × V) → (1st𝑦) = 1o)
1312opeq1d 4903 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨1o, (2nd𝑦)⟩)
149, 13eqtrd 2780 . . . . . . 7 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨1o, (2nd𝑦)⟩)
1514eqeq2d 2751 . . . . . 6 (𝑦 ∈ ({1o} × V) → (⟨1o, 𝑥⟩ = 𝑦 ↔ ⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩))
16 eqcom 2747 . . . . . 6 (⟨1o, 𝑥⟩ = 𝑦𝑦 = ⟨1o, 𝑥⟩)
17 eqid 2740 . . . . . . 7 1o = 1o
18 1oex 8532 . . . . . . . 8 1o ∈ V
19 vex 3492 . . . . . . . 8 𝑥 ∈ V
2018, 19opth 5496 . . . . . . 7 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ (1o = 1o𝑥 = (2nd𝑦)))
2117, 20mpbiran 708 . . . . . 6 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2215, 16, 213bitr3g 313 . . . . 5 (𝑦 ∈ ({1o} × V) → (𝑦 = ⟨1o, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2322bicomd 223 . . . 4 (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
2423ad2antll 728 . . 3 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
251, 7, 8, 24f1o2d 7704 . 2 (⊤ → inr:V–1-1-onto→({1o} × V))
2625mptru 1544 1 inr:V–1-1-onto→({1o} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  Vcvv 3488  {csn 4648  cop 4654   × cxp 5698  1-1-ontowf1o 6572  cfv 6573  ωcom 7903  1st c1st 8028  2nd c2nd 8029  1oc1o 8515  inrcinr 9969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-inr 9972
This theorem is referenced by:  inrresf  9985  inrresf1  9986  djuin  9987  djuun  9995
  Copyright terms: Public domain W3C validator