MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurf1o Structured version   Visualization version   GIF version

Theorem djurf1o 9910
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djurf1o inr:Vā€“1-1-ontoā†’({1o} Ɨ V)

Proof of Theorem djurf1o
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inr 9900 . . 3 inr = (š‘„ āˆˆ V ā†¦ āŸØ1o, š‘„āŸ©)
2 1onn 8641 . . . . . 6 1o āˆˆ Ļ‰
3 snidg 4661 . . . . . 6 (1o āˆˆ Ļ‰ ā†’ 1o āˆˆ {1o})
42, 3ax-mp 5 . . . . 5 1o āˆˆ {1o}
5 opelxpi 5712 . . . . 5 ((1o āˆˆ {1o} āˆ§ š‘„ āˆˆ V) ā†’ āŸØ1o, š‘„āŸ© āˆˆ ({1o} Ɨ V))
64, 5mpan 686 . . . 4 (š‘„ āˆˆ V ā†’ āŸØ1o, š‘„āŸ© āˆˆ ({1o} Ɨ V))
76adantl 480 . . 3 ((āŠ¤ āˆ§ š‘„ āˆˆ V) ā†’ āŸØ1o, š‘„āŸ© āˆˆ ({1o} Ɨ V))
8 fvexd 6905 . . 3 ((āŠ¤ āˆ§ š‘¦ āˆˆ ({1o} Ɨ V)) ā†’ (2nd ā€˜š‘¦) āˆˆ V)
9 1st2nd2 8016 . . . . . . . 8 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ š‘¦ = āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ©)
10 xp1st 8009 . . . . . . . . . 10 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ (1st ā€˜š‘¦) āˆˆ {1o})
11 elsni 4644 . . . . . . . . . 10 ((1st ā€˜š‘¦) āˆˆ {1o} ā†’ (1st ā€˜š‘¦) = 1o)
1210, 11syl 17 . . . . . . . . 9 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ (1st ā€˜š‘¦) = 1o)
1312opeq1d 4878 . . . . . . . 8 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ© = āŸØ1o, (2nd ā€˜š‘¦)āŸ©)
149, 13eqtrd 2770 . . . . . . 7 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ š‘¦ = āŸØ1o, (2nd ā€˜š‘¦)āŸ©)
1514eqeq2d 2741 . . . . . 6 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ (āŸØ1o, š‘„āŸ© = š‘¦ ā†” āŸØ1o, š‘„āŸ© = āŸØ1o, (2nd ā€˜š‘¦)āŸ©))
16 eqcom 2737 . . . . . 6 (āŸØ1o, š‘„āŸ© = š‘¦ ā†” š‘¦ = āŸØ1o, š‘„āŸ©)
17 eqid 2730 . . . . . . 7 1o = 1o
18 1oex 8478 . . . . . . . 8 1o āˆˆ V
19 vex 3476 . . . . . . . 8 š‘„ āˆˆ V
2018, 19opth 5475 . . . . . . 7 (āŸØ1o, š‘„āŸ© = āŸØ1o, (2nd ā€˜š‘¦)āŸ© ā†” (1o = 1o āˆ§ š‘„ = (2nd ā€˜š‘¦)))
2117, 20mpbiran 705 . . . . . 6 (āŸØ1o, š‘„āŸ© = āŸØ1o, (2nd ā€˜š‘¦)āŸ© ā†” š‘„ = (2nd ā€˜š‘¦))
2215, 16, 213bitr3g 312 . . . . 5 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ (š‘¦ = āŸØ1o, š‘„āŸ© ā†” š‘„ = (2nd ā€˜š‘¦)))
2322bicomd 222 . . . 4 (š‘¦ āˆˆ ({1o} Ɨ V) ā†’ (š‘„ = (2nd ā€˜š‘¦) ā†” š‘¦ = āŸØ1o, š‘„āŸ©))
2423ad2antll 725 . . 3 ((āŠ¤ āˆ§ (š‘„ āˆˆ V āˆ§ š‘¦ āˆˆ ({1o} Ɨ V))) ā†’ (š‘„ = (2nd ā€˜š‘¦) ā†” š‘¦ = āŸØ1o, š‘„āŸ©))
251, 7, 8, 24f1o2d 7662 . 2 (āŠ¤ ā†’ inr:Vā€“1-1-ontoā†’({1o} Ɨ V))
2625mptru 1546 1 inr:Vā€“1-1-ontoā†’({1o} Ɨ V)
Colors of variables: wff setvar class
Syntax hints:   ā†” wb 205   āˆ§ wa 394   = wceq 1539  āŠ¤wtru 1540   āˆˆ wcel 2104  Vcvv 3472  {csn 4627  āŸØcop 4633   Ɨ cxp 5673  ā€“1-1-ontoā†’wf1o 6541  ā€˜cfv 6542  Ļ‰com 7857  1st c1st 7975  2nd c2nd 7976  1oc1o 8461  inrcinr 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-inr 9900
This theorem is referenced by:  inrresf  9913  inrresf1  9914  djuin  9915  djuun  9923
  Copyright terms: Public domain W3C validator