| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djurf1o | Structured version Visualization version GIF version | ||
| Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| djurf1o | ⊢ inr:V–1-1-onto→({1o} × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 9799 | . . 3 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1onn 8558 | . . . . . 6 ⊢ 1o ∈ ω | |
| 3 | snidg 4612 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ {1o}) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ {1o} |
| 5 | opelxpi 5656 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ V → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
| 8 | fvexd 6837 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd ‘𝑦) ∈ V) | |
| 9 | 1st2nd2 7963 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 10 | xp1st 7956 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) ∈ {1o}) | |
| 11 | elsni 4594 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {1o} → (1st ‘𝑦) = 1o) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) = 1o) |
| 13 | 12 | opeq1d 4830 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈1o, (2nd ‘𝑦)〉) |
| 14 | 9, 13 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈1o, (2nd ‘𝑦)〉) |
| 15 | 14 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑦 ∈ ({1o} × V) → (〈1o, 𝑥〉 = 𝑦 ↔ 〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉)) |
| 16 | eqcom 2736 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈1o, 𝑥〉) | |
| 17 | eqid 2729 | . . . . . . 7 ⊢ 1o = 1o | |
| 18 | 1oex 8398 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 19 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 20 | 18, 19 | opth 5419 | . . . . . . 7 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ (1o = 1o ∧ 𝑥 = (2nd ‘𝑦))) |
| 21 | 17, 20 | mpbiran 709 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 22 | 15, 16, 21 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({1o} × V) → (𝑦 = 〈1o, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 23 | 22 | bicomd 223 | . . . 4 ⊢ (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
| 24 | 23 | ad2antll 729 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
| 25 | 1, 7, 8, 24 | f1o2d 7603 | . 2 ⊢ (⊤ → inr:V–1-1-onto→({1o} × V)) |
| 26 | 25 | mptru 1547 | 1 ⊢ inr:V–1-1-onto→({1o} × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 × cxp 5617 –1-1-onto→wf1o 6481 ‘cfv 6482 ωcom 7799 1st c1st 7922 2nd c2nd 7923 1oc1o 8381 inrcinr 9796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1st 7924 df-2nd 7925 df-1o 8388 df-inr 9799 |
| This theorem is referenced by: inrresf 9812 inrresf1 9813 djuin 9814 djuun 9822 |
| Copyright terms: Public domain | W3C validator |