| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djurf1o | Structured version Visualization version GIF version | ||
| Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| djurf1o | ⊢ inr:V–1-1-onto→({1o} × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 9925 | . . 3 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1onn 8660 | . . . . . 6 ⊢ 1o ∈ ω | |
| 3 | snidg 4640 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ {1o}) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ {1o} |
| 5 | opelxpi 5702 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ V → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
| 8 | fvexd 6901 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd ‘𝑦) ∈ V) | |
| 9 | 1st2nd2 8035 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 10 | xp1st 8028 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) ∈ {1o}) | |
| 11 | elsni 4623 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {1o} → (1st ‘𝑦) = 1o) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) = 1o) |
| 13 | 12 | opeq1d 4859 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈1o, (2nd ‘𝑦)〉) |
| 14 | 9, 13 | eqtrd 2769 | . . . . . . 7 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈1o, (2nd ‘𝑦)〉) |
| 15 | 14 | eqeq2d 2745 | . . . . . 6 ⊢ (𝑦 ∈ ({1o} × V) → (〈1o, 𝑥〉 = 𝑦 ↔ 〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉)) |
| 16 | eqcom 2741 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈1o, 𝑥〉) | |
| 17 | eqid 2734 | . . . . . . 7 ⊢ 1o = 1o | |
| 18 | 1oex 8498 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 19 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 20 | 18, 19 | opth 5461 | . . . . . . 7 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ (1o = 1o ∧ 𝑥 = (2nd ‘𝑦))) |
| 21 | 17, 20 | mpbiran 709 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 22 | 15, 16, 21 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({1o} × V) → (𝑦 = 〈1o, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 23 | 22 | bicomd 223 | . . . 4 ⊢ (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
| 24 | 23 | ad2antll 729 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
| 25 | 1, 7, 8, 24 | f1o2d 7669 | . 2 ⊢ (⊤ → inr:V–1-1-onto→({1o} × V)) |
| 26 | 25 | mptru 1546 | 1 ⊢ inr:V–1-1-onto→({1o} × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 {csn 4606 〈cop 4612 × cxp 5663 –1-1-onto→wf1o 6540 ‘cfv 6541 ωcom 7869 1st c1st 7994 2nd c2nd 7995 1oc1o 8481 inrcinr 9922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1st 7996 df-2nd 7997 df-1o 8488 df-inr 9925 |
| This theorem is referenced by: inrresf 9938 inrresf1 9939 djuin 9940 djuun 9948 |
| Copyright terms: Public domain | W3C validator |