Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djurf1o | Structured version Visualization version GIF version |
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djurf1o | ⊢ inr:V–1-1-onto→({1o} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9689 | . . 3 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1onn 8490 | . . . . . 6 ⊢ 1o ∈ ω | |
3 | snidg 4598 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ {1o}) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ {1o} |
5 | opelxpi 5628 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) | |
6 | 4, 5 | mpan 686 | . . . 4 ⊢ (𝑥 ∈ V → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
8 | fvexd 6807 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd ‘𝑦) ∈ V) | |
9 | 1st2nd2 7890 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
10 | xp1st 7883 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) ∈ {1o}) | |
11 | elsni 4581 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {1o} → (1st ‘𝑦) = 1o) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) = 1o) |
13 | 12 | opeq1d 4812 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈1o, (2nd ‘𝑦)〉) |
14 | 9, 13 | eqtrd 2773 | . . . . . . 7 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈1o, (2nd ‘𝑦)〉) |
15 | 14 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑦 ∈ ({1o} × V) → (〈1o, 𝑥〉 = 𝑦 ↔ 〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉)) |
16 | eqcom 2740 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈1o, 𝑥〉) | |
17 | eqid 2733 | . . . . . . 7 ⊢ 1o = 1o | |
18 | 1oex 8327 | . . . . . . . 8 ⊢ 1o ∈ V | |
19 | vex 3438 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
20 | 18, 19 | opth 5394 | . . . . . . 7 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ (1o = 1o ∧ 𝑥 = (2nd ‘𝑦))) |
21 | 17, 20 | mpbiran 705 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
22 | 15, 16, 21 | 3bitr3g 312 | . . . . 5 ⊢ (𝑦 ∈ ({1o} × V) → (𝑦 = 〈1o, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
23 | 22 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
24 | 23 | ad2antll 725 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
25 | 1, 7, 8, 24 | f1o2d 7543 | . 2 ⊢ (⊤ → inr:V–1-1-onto→({1o} × V)) |
26 | 25 | mptru 1544 | 1 ⊢ inr:V–1-1-onto→({1o} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2101 Vcvv 3434 {csn 4564 〈cop 4570 × cxp 5589 –1-1-onto→wf1o 6446 ‘cfv 6447 ωcom 7732 1st c1st 7849 2nd c2nd 7850 1oc1o 8310 inrcinr 9686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-om 7733 df-1st 7851 df-2nd 7852 df-1o 8317 df-inr 9689 |
This theorem is referenced by: inrresf 9702 inrresf1 9703 djuin 9704 djuun 9712 |
Copyright terms: Public domain | W3C validator |