MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurf1o Structured version   Visualization version   GIF version

Theorem djurf1o 9809
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djurf1o inr:V–1-1-onto→({1o} × V)

Proof of Theorem djurf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inr 9799 . . 3 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2 1onn 8558 . . . . . 6 1o ∈ ω
3 snidg 4612 . . . . . 6 (1o ∈ ω → 1o ∈ {1o})
42, 3ax-mp 5 . . . . 5 1o ∈ {1o}
5 opelxpi 5656 . . . . 5 ((1o ∈ {1o} ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
64, 5mpan 690 . . . 4 (𝑥 ∈ V → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
76adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ V) → ⟨1o, 𝑥⟩ ∈ ({1o} × V))
8 fvexd 6837 . . 3 ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd𝑦) ∈ V)
9 1st2nd2 7963 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 7956 . . . . . . . . . 10 (𝑦 ∈ ({1o} × V) → (1st𝑦) ∈ {1o})
11 elsni 4594 . . . . . . . . . 10 ((1st𝑦) ∈ {1o} → (1st𝑦) = 1o)
1210, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ({1o} × V) → (1st𝑦) = 1o)
1312opeq1d 4830 . . . . . . . 8 (𝑦 ∈ ({1o} × V) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨1o, (2nd𝑦)⟩)
149, 13eqtrd 2764 . . . . . . 7 (𝑦 ∈ ({1o} × V) → 𝑦 = ⟨1o, (2nd𝑦)⟩)
1514eqeq2d 2740 . . . . . 6 (𝑦 ∈ ({1o} × V) → (⟨1o, 𝑥⟩ = 𝑦 ↔ ⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩))
16 eqcom 2736 . . . . . 6 (⟨1o, 𝑥⟩ = 𝑦𝑦 = ⟨1o, 𝑥⟩)
17 eqid 2729 . . . . . . 7 1o = 1o
18 1oex 8398 . . . . . . . 8 1o ∈ V
19 vex 3440 . . . . . . . 8 𝑥 ∈ V
2018, 19opth 5419 . . . . . . 7 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ (1o = 1o𝑥 = (2nd𝑦)))
2117, 20mpbiran 709 . . . . . 6 (⟨1o, 𝑥⟩ = ⟨1o, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2215, 16, 213bitr3g 313 . . . . 5 (𝑦 ∈ ({1o} × V) → (𝑦 = ⟨1o, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2322bicomd 223 . . . 4 (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
2423ad2antll 729 . . 3 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨1o, 𝑥⟩))
251, 7, 8, 24f1o2d 7603 . 2 (⊤ → inr:V–1-1-onto→({1o} × V))
2625mptru 1547 1 inr:V–1-1-onto→({1o} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3436  {csn 4577  cop 4583   × cxp 5617  1-1-ontowf1o 6481  cfv 6482  ωcom 7799  1st c1st 7922  2nd c2nd 7923  1oc1o 8381  inrcinr 9796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-inr 9799
This theorem is referenced by:  inrresf  9812  inrresf1  9813  djuin  9814  djuun  9822
  Copyright terms: Public domain W3C validator