![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djurf1o | Structured version Visualization version GIF version |
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djurf1o | ⊢ inr:V–1-1-onto→({1o} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 9848 | . . 3 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1onn 8591 | . . . . . 6 ⊢ 1o ∈ ω | |
3 | snidg 4625 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ {1o}) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ {1o} |
5 | opelxpi 5675 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) | |
6 | 4, 5 | mpan 688 | . . . 4 ⊢ (𝑥 ∈ V → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈1o, 𝑥〉 ∈ ({1o} × V)) |
8 | fvexd 6862 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({1o} × V)) → (2nd ‘𝑦) ∈ V) | |
9 | 1st2nd2 7965 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
10 | xp1st 7958 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) ∈ {1o}) | |
11 | elsni 4608 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {1o} → (1st ‘𝑦) = 1o) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({1o} × V) → (1st ‘𝑦) = 1o) |
13 | 12 | opeq1d 4841 | . . . . . . . 8 ⊢ (𝑦 ∈ ({1o} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈1o, (2nd ‘𝑦)〉) |
14 | 9, 13 | eqtrd 2771 | . . . . . . 7 ⊢ (𝑦 ∈ ({1o} × V) → 𝑦 = 〈1o, (2nd ‘𝑦)〉) |
15 | 14 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑦 ∈ ({1o} × V) → (〈1o, 𝑥〉 = 𝑦 ↔ 〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉)) |
16 | eqcom 2738 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈1o, 𝑥〉) | |
17 | eqid 2731 | . . . . . . 7 ⊢ 1o = 1o | |
18 | 1oex 8427 | . . . . . . . 8 ⊢ 1o ∈ V | |
19 | vex 3450 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
20 | 18, 19 | opth 5438 | . . . . . . 7 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ (1o = 1o ∧ 𝑥 = (2nd ‘𝑦))) |
21 | 17, 20 | mpbiran 707 | . . . . . 6 ⊢ (〈1o, 𝑥〉 = 〈1o, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
22 | 15, 16, 21 | 3bitr3g 312 | . . . . 5 ⊢ (𝑦 ∈ ({1o} × V) → (𝑦 = 〈1o, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
23 | 22 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({1o} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
24 | 23 | ad2antll 727 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({1o} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈1o, 𝑥〉)) |
25 | 1, 7, 8, 24 | f1o2d 7612 | . 2 ⊢ (⊤ → inr:V–1-1-onto→({1o} × V)) |
26 | 25 | mptru 1548 | 1 ⊢ inr:V–1-1-onto→({1o} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 Vcvv 3446 {csn 4591 〈cop 4597 × cxp 5636 –1-1-onto→wf1o 6500 ‘cfv 6501 ωcom 7807 1st c1st 7924 2nd c2nd 7925 1oc1o 8410 inrcinr 9845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-om 7808 df-1st 7926 df-2nd 7927 df-1o 8417 df-inr 9848 |
This theorem is referenced by: inrresf 9861 inrresf1 9862 djuin 9863 djuun 9871 |
Copyright terms: Public domain | W3C validator |