MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurcl Structured version   Visualization version   GIF version

Theorem djurcl 9773
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3460 . . 3 (𝐶𝐵𝐶 ∈ V)
2 1oex 8382 . . . . 5 1o ∈ V
32snid 4614 . . . 4 1o ∈ {1o}
4 opelxpi 5662 . . . 4 ((1o ∈ {1o} ∧ 𝐶𝐵) → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
53, 4mpan 688 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
6 opeq2 4823 . . . 4 (𝑥 = 𝐶 → ⟨1o, 𝑥⟩ = ⟨1o, 𝐶⟩)
7 df-inr 9765 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
86, 7fvmptg 6934 . . 3 ((𝐶 ∈ V ∧ ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵)) → (inr‘𝐶) = ⟨1o, 𝐶⟩)
91, 5, 8syl2anc 585 . 2 (𝐶𝐵 → (inr‘𝐶) = ⟨1o, 𝐶⟩)
10 elun2 4129 . . . 4 (⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 17 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 9763 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2849 . 2 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2838 1 (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3442  cun 3900  c0 4274  {csn 4578  cop 4584   × cxp 5623  cfv 6484  1oc1o 8365  cdju 9760  inrcinr 9762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-suc 6313  df-iota 6436  df-fun 6486  df-fv 6492  df-1o 8372  df-dju 9763  df-inr 9765
This theorem is referenced by:  inrresf  9778  updjudhcoinrg  9795
  Copyright terms: Public domain W3C validator