MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurcl Structured version   Visualization version   GIF version

Theorem djurcl 9910
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl (𝐢 ∈ 𝐡 β†’ (inrβ€˜πΆ) ∈ (𝐴 βŠ” 𝐡))

Proof of Theorem djurcl
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 elex 3491 . . 3 (𝐢 ∈ 𝐡 β†’ 𝐢 ∈ V)
2 1oex 8480 . . . . 5 1o ∈ V
32snid 4665 . . . 4 1o ∈ {1o}
4 opelxpi 5714 . . . 4 ((1o ∈ {1o} ∧ 𝐢 ∈ 𝐡) β†’ ⟨1o, 𝐢⟩ ∈ ({1o} Γ— 𝐡))
53, 4mpan 686 . . 3 (𝐢 ∈ 𝐡 β†’ ⟨1o, 𝐢⟩ ∈ ({1o} Γ— 𝐡))
6 opeq2 4875 . . . 4 (π‘₯ = 𝐢 β†’ ⟨1o, π‘₯⟩ = ⟨1o, 𝐢⟩)
7 df-inr 9902 . . . 4 inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
86, 7fvmptg 6997 . . 3 ((𝐢 ∈ V ∧ ⟨1o, 𝐢⟩ ∈ ({1o} Γ— 𝐡)) β†’ (inrβ€˜πΆ) = ⟨1o, 𝐢⟩)
91, 5, 8syl2anc 582 . 2 (𝐢 ∈ 𝐡 β†’ (inrβ€˜πΆ) = ⟨1o, 𝐢⟩)
10 elun2 4178 . . . 4 (⟨1o, 𝐢⟩ ∈ ({1o} Γ— 𝐡) β†’ ⟨1o, 𝐢⟩ ∈ (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡)))
115, 10syl 17 . . 3 (𝐢 ∈ 𝐡 β†’ ⟨1o, 𝐢⟩ ∈ (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡)))
12 df-dju 9900 . . 3 (𝐴 βŠ” 𝐡) = (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡))
1311, 12eleqtrrdi 2842 . 2 (𝐢 ∈ 𝐡 β†’ ⟨1o, 𝐢⟩ ∈ (𝐴 βŠ” 𝐡))
149, 13eqeltrd 2831 1 (𝐢 ∈ 𝐡 β†’ (inrβ€˜πΆ) ∈ (𝐴 βŠ” 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  Vcvv 3472   βˆͺ cun 3947  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635   Γ— cxp 5675  β€˜cfv 6544  1oc1o 8463   βŠ” cdju 9897  inrcinr 9899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-suc 6371  df-iota 6496  df-fun 6546  df-fv 6552  df-1o 8470  df-dju 9900  df-inr 9902
This theorem is referenced by:  inrresf  9915  updjudhcoinrg  9932
  Copyright terms: Public domain W3C validator