![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djurcl | Structured version Visualization version GIF version |
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djurcl | ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3413 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
2 | 1oex 7851 | . . . . 5 ⊢ 1o ∈ V | |
3 | 2 | snid 4429 | . . . 4 ⊢ 1o ∈ {1o} |
4 | opelxpi 5392 | . . . 4 ⊢ ((1o ∈ {1o} ∧ 𝐶 ∈ 𝐵) → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) | |
5 | 3, 4 | mpan 680 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) |
6 | opeq2 4637 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈1o, 𝑥〉 = 〈1o, 𝐶〉) | |
7 | df-inr 9063 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
8 | 6, 7 | fvmptg 6540 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) → (inr‘𝐶) = 〈1o, 𝐶〉) |
9 | 1, 5, 8 | syl2anc 579 | . 2 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) = 〈1o, 𝐶〉) |
10 | elun2 4003 | . . . 4 ⊢ (〈1o, 𝐶〉 ∈ ({1o} × 𝐵) → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
11 | 5, 10 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
12 | df-dju 9061 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
13 | 11, 12 | syl6eleqr 2869 | . 2 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
14 | 9, 13 | eqeltrd 2858 | 1 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ∪ cun 3789 ∅c0 4140 {csn 4397 〈cop 4403 × cxp 5353 ‘cfv 6135 1oc1o 7836 ⊔ cdju 9058 inrcinr 9060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fv 6143 df-1o 7843 df-dju 9061 df-inr 9063 |
This theorem is referenced by: inrresf 9075 updjudhcoinrg 9092 |
Copyright terms: Public domain | W3C validator |