![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djurcl | Structured version Visualization version GIF version |
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djurcl | ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3482 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
2 | 1oex 8506 | . . . . 5 ⊢ 1o ∈ V | |
3 | 2 | snid 4669 | . . . 4 ⊢ 1o ∈ {1o} |
4 | opelxpi 5719 | . . . 4 ⊢ ((1o ∈ {1o} ∧ 𝐶 ∈ 𝐵) → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) | |
5 | 3, 4 | mpan 688 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) |
6 | opeq2 4880 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈1o, 𝑥〉 = 〈1o, 𝐶〉) | |
7 | df-inr 9946 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
8 | 6, 7 | fvmptg 7007 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) → (inr‘𝐶) = 〈1o, 𝐶〉) |
9 | 1, 5, 8 | syl2anc 582 | . 2 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) = 〈1o, 𝐶〉) |
10 | elun2 4178 | . . . 4 ⊢ (〈1o, 𝐶〉 ∈ ({1o} × 𝐵) → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
11 | 5, 10 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
12 | df-dju 9944 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
13 | 11, 12 | eleqtrrdi 2837 | . 2 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
14 | 9, 13 | eqeltrd 2826 | 1 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∪ cun 3945 ∅c0 4325 {csn 4633 〈cop 4639 × cxp 5680 ‘cfv 6554 1oc1o 8489 ⊔ cdju 9941 inrcinr 9943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-suc 6382 df-iota 6506 df-fun 6556 df-fv 6562 df-1o 8496 df-dju 9944 df-inr 9946 |
This theorem is referenced by: inrresf 9959 updjudhcoinrg 9976 |
Copyright terms: Public domain | W3C validator |