MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djurcl Structured version   Visualization version   GIF version

Theorem djurcl 9600
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . . 3 (𝐶𝐵𝐶 ∈ V)
2 1oex 8280 . . . . 5 1o ∈ V
32snid 4594 . . . 4 1o ∈ {1o}
4 opelxpi 5617 . . . 4 ((1o ∈ {1o} ∧ 𝐶𝐵) → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
53, 4mpan 686 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
6 opeq2 4802 . . . 4 (𝑥 = 𝐶 → ⟨1o, 𝑥⟩ = ⟨1o, 𝐶⟩)
7 df-inr 9592 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
86, 7fvmptg 6855 . . 3 ((𝐶 ∈ V ∧ ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵)) → (inr‘𝐶) = ⟨1o, 𝐶⟩)
91, 5, 8syl2anc 583 . 2 (𝐶𝐵 → (inr‘𝐶) = ⟨1o, 𝐶⟩)
10 elun2 4107 . . . 4 (⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 17 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 9590 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2850 . 2 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2839 1 (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {csn 4558  cop 4564   × cxp 5578  cfv 6418  1oc1o 8260  cdju 9587  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-1o 8267  df-dju 9590  df-inr 9592
This theorem is referenced by:  inrresf  9605  updjudhcoinrg  9622
  Copyright terms: Public domain W3C validator