![]() |
Metamath
Proof Explorer Theorem List (p. 99 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30800) |
![]() (30801-32323) |
![]() (32324-48424) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | r1tr 9801 | The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ Tr (𝑅1‘𝐴) | ||
Theorem | r1tr2 9802 | The union of a cumulative hierarchy of sets at ordinal 𝐴 is a subset of the hierarchy at 𝐴. JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011.) |
⊢ ∪ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | ||
Theorem | r1ordg 9803 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) |
⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
Theorem | r1ord3g 9804 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1ord 9805 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
Theorem | r1ord2 9806 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 22-Sep-2003.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1ord3 9807 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1sssuc 9808 | The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
Theorem | r1pwss 9809 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) | ||
Theorem | r1sscl 9810 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) | ||
Theorem | r1val1 9811* | The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | ||
Theorem | tz9.12lem1 9812* | Lemma for tz9.12 9815. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (𝐹 “ 𝐴) ⊆ On | ||
Theorem | tz9.12lem2 9813* | Lemma for tz9.12 9815. (Contributed by NM, 22-Sep-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On | ||
Theorem | tz9.12lem3 9814* | Lemma for tz9.12 9815. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ (𝐹 “ 𝐴))) | ||
Theorem | tz9.12 9815* | A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9812 through tz9.12lem3 9814. (Contributed by NM, 22-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) | ||
Theorem | tz9.13 9816* | Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) | ||
Theorem | tz9.13g 9817* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9816 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | ||
Theorem | rankwflemb 9818* | Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
Theorem | rankf 9819 | The domain and codomain of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.) |
⊢ rank:∪ (𝑅1 “ On)⟶On | ||
Theorem | rankon 9820 | The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
⊢ (rank‘𝐴) ∈ On | ||
Theorem | r1elwf 9821 | Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | rankvalb 9822* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9841 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
Theorem | rankr1ai 9823 | One direction of rankr1a 9861. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | ||
Theorem | rankvaln 9824 | Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 9838, unless 𝐴 is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | ||
Theorem | rankidb 9825 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | ||
Theorem | rankdmr1 9826 | A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (rank‘𝐴) ∈ dom 𝑅1 | ||
Theorem | rankr1ag 9827 | A version of rankr1a 9861 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
Theorem | rankr1bg 9828 | A relationship between rank and 𝑅1. See rankr1ag 9827 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) | ||
Theorem | r1rankidb 9829 | Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | ||
Theorem | r1elssi 9830 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9831 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
Theorem | r1elss 9831 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
Theorem | pwwf 9832 | A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | sswf 9833 | A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | snwf 9834 | A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | ||
Theorem | unwf 9835 | A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) ↔ (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | ||
Theorem | prwf 9836 | An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) | ||
Theorem | opwf 9837 | An ordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → 〈𝐴, 𝐵〉 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | unir1 9838 | The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
⊢ ∪ (𝑅1 “ On) = V | ||
Theorem | jech9.3 9839 | Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V | ||
Theorem | rankwflem 9840* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13g 9817 is useful in proofs of theorems about the rank function. (Contributed by NM, 4-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
Theorem | rankval 9841* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | ||
Theorem | rankvalg 9842* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9841 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
Theorem | rankval2 9843* | Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.) |
⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) | ||
Theorem | uniwf 9844 | A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | rankr1clem 9845 | Lemma for rankr1c 9846. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | ||
Theorem | rankr1c 9846 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
Theorem | rankidn 9847 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | ||
Theorem | rankpwi 9848 | The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) | ||
Theorem | rankelb 9849 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) | ||
Theorem | wfelirr 9850 | A well-founded set is not a member of itself. This proof does not require the axiom of regularity, unlike elirr 9622. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | rankval3b 9851* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥}) | ||
Theorem | ranksnb 9852 | The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | ||
Theorem | rankonidlem 9853 | Lemma for rankonid 9854. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
⊢ (𝐴 ∈ dom 𝑅1 → (𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)) | ||
Theorem | rankonid 9854 | The rank of an ordinal number is itself. Proposition 9.18 of [TakeutiZaring] p. 79 and its converse. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | ||
Theorem | onwf 9855 | The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ On ⊆ ∪ (𝑅1 “ On) | ||
Theorem | onssr1 9856 | Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | ||
Theorem | rankr1g 9857 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
Theorem | rankid 9858 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) | ||
Theorem | rankr1 9859 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | ssrankr1 9860 | A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) | ||
Theorem | rankr1a 9861 | A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 9860 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 9889 for the subset version. (Contributed by Raph Levien, 29-May-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
Theorem | r1val2 9862* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Definition 15.19 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = {𝑥 ∣ (rank‘𝑥) ∈ 𝐴}) | ||
Theorem | r1val3 9863* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | ||
Theorem | rankel 9864 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)) | ||
Theorem | rankval3 9865* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥} | ||
Theorem | bndrank 9866* | Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | ||
Theorem | unbndrank 9867* | The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | ||
Theorem | rankpw 9868 | The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 22-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝒫 𝐴) = suc (rank‘𝐴) | ||
Theorem | ranklim 9869 | The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.) |
⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | ||
Theorem | r1pw 9870 | A stronger property of 𝑅1 than rankpw 9868. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | r1pwALT 9871 | Alternate shorter proof of r1pw 9870 based on the additional axioms ax-reg 9617 and ax-inf2 9666. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | r1pwcl 9872 | The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ (Lim 𝐵 → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘𝐵))) | ||
Theorem | rankssb 9873 | The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵))) | ||
Theorem | rankss 9874 | The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵)) | ||
Theorem | rankunb 9875 | The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankprb 9876 | The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankopb 9877 | The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankuni2b 9878* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥)) | ||
Theorem | ranksn 9879 | The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘{𝐴}) = suc (rank‘𝐴) | ||
Theorem | rankuni2 9880* | The rank of a union. Part of Theorem 15.17(iv) of [Monk1] p. 112. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) | ||
Theorem | rankun 9881 | The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by NM, 26-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) | ||
Theorem | rankpr 9882 | The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) | ||
Theorem | rankop 9883 | The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 13-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) | ||
Theorem | r1rankid 9884 | Any set is a subset of the hierarchy of its rank. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | ||
Theorem | rankeq0b 9885 | A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) | ||
Theorem | rankeq0 9886 | A set is empty iff its rank is empty. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = ∅ ↔ (rank‘𝐴) = ∅) | ||
Theorem | rankr1id 9887 | The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) | ||
Theorem | rankuni 9888 | The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | ||
Theorem | rankr1b 9889 | A relationship between rank and 𝑅1. See rankr1a 9861 for the membership version. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) | ||
Theorem | ranksuc 9890 | The rank of a successor. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘suc 𝐴) = suc (rank‘𝐴) | ||
Theorem | rankuniss 9891 | Upper bound of the rank of a union. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 30-Nov-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘∪ 𝐴) ⊆ (rank‘𝐴) | ||
Theorem | rankval4 9892* | The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) | ||
Theorem | rankbnd 9893* | The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ 𝐵) | ||
Theorem | rankbnd2 9894* | The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) | ||
Theorem | rankc1 9895* | A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) | ||
Theorem | rankc2 9896* | A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) | ||
Theorem | rankelun 9897 | Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) | ||
Theorem | rankelpr 9898 | Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) | ||
Theorem | rankelop 9899 | Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) | ||
Theorem | rankxpl 9900 | A lower bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 ∪ 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |