Home | Metamath
Proof Explorer Theorem List (p. 99 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ac5num 9801* | A version of ac5b 10243 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
Theorem | ondomen 9802 | If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
Theorem | numdom 9803 | A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
Theorem | ssnum 9804 | A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) | ||
Theorem | onssnum 9805 | All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) | ||
Theorem | indcardi 9806* | Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ dom card) & ⊢ ((𝜑 ∧ 𝑅 ≼ 𝑇 ∧ ∀𝑦(𝑆 ≺ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | acnrcl 9807 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
Theorem | acneq 9808 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
Theorem | isacn 9809* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
Theorem | acni 9810* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) | ||
Theorem | acni2 9811* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) | ||
Theorem | acni3 9812* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | acnlem 9813* | Construct a mapping satisfying the consequent of isacn 9809. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) | ||
Theorem | numacn 9814 | A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴)) | ||
Theorem | finacn 9815 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
Theorem | acndom 9816 | A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ≼ 𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) | ||
Theorem | acnnum 9817 | A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) | ||
Theorem | acnen 9818 | The class of choice sets of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) | ||
Theorem | acndom2 9819 | A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | ||
Theorem | acnen2 9820 | The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) | ||
Theorem | fodomacn 9821 | A version of fodom 10288 that doesn't require the Axiom of Choice ax-ac 10224. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
Theorem | fodomnum 9822 | A version of fodom 10288 that doesn't require the Axiom of Choice ax-ac 10224. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
Theorem | fonum 9823 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | ||
Theorem | numwdom 9824 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) | ||
Theorem | fodomfi2 9825 | Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
Theorem | wdomfil 9826 | Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) | ||
Theorem | infpwfien 9827 | Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | ||
Theorem | inffien 9828 | The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) | ||
Theorem | wdomnumr 9829 | Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | alephfnon 9830 | The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ ℵ Fn On | ||
Theorem | aleph0 9831 | The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (ℵ‘∅) = ω | ||
Theorem | alephlim 9832* | Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) | ||
Theorem | alephsuc 9833 | Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9325, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | ||
Theorem | alephon 9834 | An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (ℵ‘𝐴) ∈ On | ||
Theorem | alephcard 9835 | Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | ||
Theorem | alephnbtwn 9836 | No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵 ∧ 𝐵 ∈ (ℵ‘suc 𝐴))) | ||
Theorem | alephnbtwn2 9837 | No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ ¬ ((ℵ‘𝐴) ≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc 𝐴)) | ||
Theorem | alephordilem1 9838 | Lemma for alephordi 9839. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | ||
Theorem | alephordi 9839 | Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
Theorem | alephord 9840 | Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
Theorem | alephord2 9841 | Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
Theorem | alephord2i 9842 | Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
Theorem | alephord3 9843 | Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | ||
Theorem | alephsucdom 9844 | A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) | ||
Theorem | alephsuc2 9845* | An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9312 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9707. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | ||
Theorem | alephdom 9846 | Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) | ||
Theorem | alephgeom 9847 | Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | ||
Theorem | alephislim 9848 | Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) | ||
Theorem | aleph11 9849 | The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | alephf1 9850 | The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 9868. (Contributed by Mario Carneiro, 2-Feb-2013.) |
⊢ ℵ:On–1-1→On | ||
Theorem | alephsdom 9851 | If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) | ||
Theorem | alephdom2 9852 | A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ 𝐵)) | ||
Theorem | alephle 9853 | The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9874, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) | ||
Theorem | cardaleph 9854* | Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) | ||
Theorem | cardalephex 9855* | Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | ||
Theorem | infenaleph 9856* | An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) | ||
Theorem | isinfcard 9857 | Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | ||
Theorem | iscard3 9858 | Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) | ||
Theorem | cardnum 9859 | Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in ω plus the transfinite alephs. (Contributed by NM, 10-Sep-2004.) |
⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ) | ||
Theorem | alephinit 9860* | An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴 ≼ 𝑥 → 𝐴 ⊆ 𝑥))) | ||
Theorem | carduniima 9861 | The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) | ||
Theorem | cardinfima 9862* | If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
⊢ (𝐴 ∈ 𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ ran ℵ)) | ||
Theorem | alephiso 9863 | Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | ||
Theorem | alephprc 9864 | The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.) |
⊢ ¬ ran ℵ ∈ V | ||
Theorem | alephsson 9865 | The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ ran ℵ ⊆ On | ||
Theorem | unialeph 9866 | The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ ∪ ran ℵ = On | ||
Theorem | alephsmo 9867 | The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
⊢ Smo ℵ | ||
Theorem | alephf1ALT 9868 | Alternate proof of alephf1 9850. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℵ:On–1-1→On | ||
Theorem | alephfplem1 9869 | Lemma for alephfp 9873. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝐻‘∅) ∈ ran ℵ | ||
Theorem | alephfplem2 9870* | Lemma for alephfp 9873. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) | ||
Theorem | alephfplem3 9871* | Lemma for alephfp 9873. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) | ||
Theorem | alephfplem4 9872 | Lemma for alephfp 9873. (Contributed by NM, 5-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ | ||
Theorem | alephfp 9873 | The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 9874 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (ℵ‘∪ (𝐻 “ ω)) = ∪ (𝐻 “ ω) | ||
Theorem | alephfp2 9874 | The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 9873 for an actual example of a fixed point. Compare the inequality alephle 9853 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 | ||
Theorem | alephval3 9875* | An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.) |
⊢ (𝐴 ∈ On → (ℵ‘𝐴) = ∩ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) | ||
Theorem | alephsucpw2 9876 | The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10441 or gchaleph2 10437.) The transposed form alephsucpw 10335 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | ||
Theorem | mappwen 9877 | Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵)) → (𝐴 ↑m 𝐵) ≈ 𝒫 𝐵) | ||
Theorem | finnisoeu 9878* | A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)) | ||
Theorem | iunfictbso 9879 | Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴) → ∪ 𝐴 ≼ ω) | ||
Syntax | wac 9880 | Wff for an abbreviation of the axiom of choice. |
wff CHOICE | ||
Definition | df-ac 9881* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There is a slight problem with taking the exact form of ax-ac 10224 as our definition, because the equivalence to more standard forms (dfac2 9896) requires the Axiom of Regularity, which we often try to avoid. Thus, we take the first of the "textbook forms" as the definition and derive the form of ax-ac 10224 itself as dfac0 9898. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
Theorem | aceq1 9882* | Equivalence of two versions of the Axiom of Choice ax-ac 10224. The proof uses neither AC nor the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
Theorem | aceq0 9883* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac 10224. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
Theorem | aceq2 9884* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
Theorem | aceq3lem 9885* | Lemma for dfac3 9886. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) ⇒ ⊢ (∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) | ||
Theorem | dfac3 9886* | Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of [Enderton] p. 49. The right-hand side is the Axiom of Choice of [TakeutiZaring] p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | dfac4 9887* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
Theorem | dfac5lem1 9888* | Lemma for dfac5 9893. (Contributed by NM, 12-Apr-2004.) |
⊢ (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔 ∈ 𝑤 ∧ 〈𝑤, 𝑔〉 ∈ 𝑦)) | ||
Theorem | dfac5lem2 9889* | Lemma for dfac5 9893. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (〈𝑤, 𝑔〉 ∈ ∪ 𝐴 ↔ (𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤)) | ||
Theorem | dfac5lem3 9890* | Lemma for dfac5 9893. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ)) | ||
Theorem | dfac5lem4 9891* | Lemma for dfac5 9893. (Contributed by NM, 11-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑦∀𝑧 ∈ 𝐴 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
Theorem | dfac5lem5 9892* | Lemma for dfac5 9893. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) | ||
Theorem | dfac5 9893* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of [Enderton] p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | ||
Theorem | dfac2a 9894* | Our Axiom of Choice (in the form of ac3 10227) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b 9895 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → CHOICE) | ||
Theorem | dfac2b 9895* | Axiom of Choice (first form) of [Enderton] p. 49 implies our Axiom of Choice (in the form of ac3 10227). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq 9366 and preleq 9383 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 9894.) (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.) |
⊢ (CHOICE → ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
Theorem | dfac2 9896* | Axiom of Choice (first form) of [Enderton] p. 49 corresponds to our Axiom of Choice (in the form of ac3 10227). The proof does not make use of AC, but the Axiom of Regularity is used (by applying dfac2b 9895). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
Theorem | dfac7 9897* | Equivalence of the Axiom of Choice (first form) of [Enderton] p. 49 and our Axiom of Choice (in the form of ac2 10226). The proof does not depend on AC but does depend on the Axiom of Regularity. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) | ||
Theorem | dfac0 9898* | Equivalence of two versions of the Axiom of Choice. The proof uses the Axiom of Regularity. The right-hand side is our original ax-ac 10224. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
Theorem | dfac1 9899* | Equivalence of two versions of the Axiom of Choice ax-ac 10224. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
Theorem | dfac8 9900* | A proof of the equivalency of the well-ordering theorem weth 10260 and the axiom of choice ac7 10238. (Contributed by Mario Carneiro, 5-Jan-2013.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |