| Metamath
Proof Explorer Theorem List (p. 99 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | inrresf 9801 | The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | ||
| Theorem | inrresf1 9802 | The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
| ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | ||
| Theorem | djuin 9803 | The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | ||
| Theorem | djur 9804* | A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) → (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) | ||
| Theorem | djuss 9805 | A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
| ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | ||
| Theorem | djuunxp 9806 | The union of a disjoint union and its inversion is the Cartesian product of an unordered pair and the union of the left and right classes of the disjoint unions. (Proposed by GL, 4-Jul-2022.) (Contributed by AV, 4-Jul-2022.) |
| ⊢ ((𝐴 ⊔ 𝐵) ∪ (𝐵 ⊔ 𝐴)) = ({∅, 1o} × (𝐴 ∪ 𝐵)) | ||
| Theorem | djuexALT 9807 | Alternate proof of djuex 9793, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | ||
| Theorem | eldju1st 9808 | The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
| ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | ||
| Theorem | eldju2ndl 9809 | The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
| ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) = ∅) → (2nd ‘𝑋) ∈ 𝐴) | ||
| Theorem | eldju2ndr 9810 | The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
| ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) | ||
| Theorem | djuun 9811 | The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) |
| ⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | ||
| Theorem | 1stinl 9812 | The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) | ||
| Theorem | 2ndinl 9813 | The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) | ||
| Theorem | 1stinr 9814 | The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) | ||
| Theorem | 2ndinr 9815 | The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) | ||
| Theorem | updjudhf 9816* | The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) | ||
| Theorem | updjudhcoinlf 9817* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹) | ||
| Theorem | updjudhcoinrg 9818* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺) | ||
| Theorem | updjud 9819* | Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl 9787 and df-inr 9788, is the coproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct 9788 (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of [Adamek] p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) | ||
| Syntax | ccrd 9820 | Extend class definition to include the cardinal size function. |
| class card | ||
| Syntax | cale 9821 | Extend class definition to include the aleph function. |
| class ℵ | ||
| Syntax | ccf 9822 | Extend class definition to include the cofinality function. |
| class cf | ||
| Syntax | wacn 9823 | The axiom of choice for limited-length sequences. |
| class AC 𝐴 | ||
| Definition | df-card 9824* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. See cardval 10429 for its value and cardval2 9876 for a simpler version of its value. The principal theorem relating cardinality to equinumerosity is carden 10434. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
| ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
| Definition | df-aleph 9825 | Define the aleph function. Our definition expresses Definition 12 of [Suppes] p. 229 in a closed form, from which we derive the recursive definition as Theorems aleph0 9949, alephsuc 9951, and alephlim 9950. The aleph function provides a one-to-one, onto mapping from the ordinal numbers to the infinite cardinal numbers. Roughly, any aleph is the smallest infinite cardinal number whose size is strictly greater than any aleph before it. (Contributed by NM, 21-Oct-2003.) |
| ⊢ ℵ = rec(har, ω) | ||
| Definition | df-cf 9826* | Define the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). See cfval 10130 for its value and a description. (Contributed by NM, 1-Apr-2004.) |
| ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) | ||
| Definition | df-acn 9827* | Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of nonempty subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶𝒫 𝑋 ∖ {∅}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | ||
| Theorem | cardf2 9828* | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | ||
| Theorem | cardon 9829 | The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (card‘𝐴) ∈ On | ||
| Theorem | isnum2 9830* | A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | ||
| Theorem | isnumi 9831 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | ennum 9832 | Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) | ||
| Theorem | finnum 9833 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
| Theorem | onenon 9834 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
| Theorem | tskwe 9835* | A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card) | ||
| Theorem | xpnum 9836 | The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ∈ dom card) | ||
| Theorem | cardval3 9837* | An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
| Theorem | cardid2 9838 | Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | isnum3 9839 | A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴) | ||
| Theorem | oncardval 9840* | The value of the cardinal number function with an ordinal number as its argument. Unlike cardval 10429, this theorem does not require the Axiom of Choice. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
| Theorem | oncardid 9841 | Any ordinal number is equinumerous to its cardinal number. Unlike cardid 10430, this theorem does not require the Axiom of Choice. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardonle 9842 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
| Theorem | card0 9843 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (card‘∅) = ∅ | ||
| Theorem | cardidm 9844 | The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | ||
| Theorem | oncard 9845* | A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) | ||
| Theorem | ficardom 9846 | The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
| ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | ||
| Theorem | ficardid 9847 | A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.) |
| ⊢ (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardnn 9848 | The cardinality of a natural number is the number. Corollary 10.23 of [TakeutiZaring] p. 90. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | ||
| Theorem | cardnueq0 9849 | The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | cardne 9850 | No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.) |
| ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) | ||
| Theorem | carden2a 9851 | If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9852 are meant to replace carden 10434 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.) |
| ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) | ||
| Theorem | carden2b 9852 | If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 9851 are meant to replace carden 10434 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | ||
| Theorem | card1 9853* | A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | cardsn 9854 | A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (card‘{𝐴}) = 1o) | ||
| Theorem | carddomi2 9855 | Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 10437, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) | ||
| Theorem | sdomsdomcardi 9856 | A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ (𝐴 ≺ (card‘𝐵) → 𝐴 ≺ 𝐵) | ||
| Theorem | cardlim 9857 | An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | ||
| Theorem | cardsdomelir 9858 | A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 9859 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) | ||
| Theorem | cardsdomel 9859 | A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) | ||
| Theorem | iscard 9860* | Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | ||
| Theorem | iscard2 9861* | Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | ||
| Theorem | carddom2 9862 | Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10437, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | harcard 9863 | The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (card‘(har‘𝐴)) = (har‘𝐴) | ||
| Theorem | cardprclem 9864* | Lemma for cardprc 9865. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥} ⇒ ⊢ ¬ 𝐴 ∈ V | ||
| Theorem | cardprc 9865 | The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10444 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9425 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V | ||
| Theorem | carduni 9866* | The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (card‘∪ 𝐴) = ∪ 𝐴)) | ||
| Theorem | cardiun 9867* | The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵 → (card‘∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 𝐵)) | ||
| Theorem | cardennn 9868 | If 𝐴 is equinumerous to a natural number, then that number is its cardinal. (Contributed by Mario Carneiro, 11-Jan-2013.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ ω) → (card‘𝐴) = 𝐵) | ||
| Theorem | cardsucinf 9869 | The cardinality of the successor of an infinite ordinal. (Contributed by Mario Carneiro, 11-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (card‘suc 𝐴) = (card‘𝐴)) | ||
| Theorem | cardsucnn 9870 | The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf 9869. (Contributed by NM, 7-Nov-2008.) |
| ⊢ (𝐴 ∈ ω → (card‘suc 𝐴) = suc (card‘𝐴)) | ||
| Theorem | cardom 9871 | The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (card‘ω) = ω | ||
| Theorem | carden2 9872 | Two numerable sets are equinumerous iff their cardinal numbers are equal. Unlike carden 10434, the Axiom of Choice is not required. (Contributed by Mario Carneiro, 22-Sep-2013.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
| Theorem | cardsdom2 9873 | A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | domtri2 9874 | Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | nnsdomel 9875 | Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | cardval2 9876* | An alternate version of the value of the cardinal number of a set. Compare cardval 10429. This theorem could be used to give a simpler definition of card in place of df-card 9824. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
| ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
| Theorem | isinffi 9877* | An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9144 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) | ||
| Theorem | fidomtri 9878 | Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | fidomtri2 9879 | Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | harsdom 9880 | The Hartogs number of a well-orderable set strictly dominates the set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | ||
| Theorem | onsdom 9881* | Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | ||
| Theorem | harval2 9882* | An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | harsucnn 9883 | The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
| ⊢ (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴) | ||
| Theorem | cardmin2 9884* | The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | pm54.43lem 9885* | In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9853), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9886. (Contributed by NM, 4-Nov-2013.) |
| ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) | ||
| Theorem | pm54.43 9886 |
Theorem *54.43 of [WhiteheadRussell]
p. 360. "From this proposition it
will follow, when arithmetical addition has been defined, that
1+1=2."
See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations.
This theorem states that two sets of cardinality 1 are disjoint iff
their union has cardinality 2.
Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9853), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} which is the same as 𝐴 ≈ 1o by pm54.43lem 9885. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.) Theorem dju1p1e2 10057 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.) |
| ⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
| Theorem | enpr2 9887 | An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8965. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5301, ax-un 7663. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | pr2ne 9888 | If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5301, ax-un 7663. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
| Theorem | prdom2 9889 | An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) | ||
| Theorem | en2eqpr 9890 | Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) | ||
| Theorem | en2eleq 9891 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
| Theorem | en2other2 9892 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
| Theorem | dif1card 9893 | The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) | ||
| Theorem | leweon 9894* | Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 9895, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} ⇒ ⊢ 𝐿 We (On × On) | ||
| Theorem | r0weon 9895* | A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} & ⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤)))} ⇒ ⊢ (𝑅 We (On × On) ∧ 𝑅 Se (On × On)) | ||
| Theorem | infxpenlem 9896* | Lemma for infxpen 9897. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} & ⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤)))} & ⊢ 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) & ⊢ (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎))) & ⊢ 𝑀 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) & ⊢ 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎)) ⇒ ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | infxpen 9897 | Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | xpomen 9898 | The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ω × ω) ≈ ω | ||
| Theorem | xpct 9899 | The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) | ||
| Theorem | infxpidm2 9900 | Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10445. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |