![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djueq12 | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5697 | . . . 4 ⊢ (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵)) |
3 | xpeq2 5697 | . . . 4 ⊢ (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷)) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷)) |
5 | 2, 4 | uneq12d 4164 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))) |
6 | df-dju 9902 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
7 | df-dju 9902 | . 2 ⊢ (𝐵 ⊔ 𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)) | |
8 | 5, 6, 7 | 3eqtr4g 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3946 ∅c0 4322 {csn 4628 × cxp 5674 1oc1o 8465 ⊔ cdju 9899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-opab 5211 df-xp 5682 df-dju 9902 |
This theorem is referenced by: djueq1 9906 djueq2 9907 isfin5 10300 alephadd 10578 |
Copyright terms: Public domain | W3C validator |