MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djueq12 Structured version   Visualization version   GIF version

Theorem djueq12 9857
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 5659 . . . 4 (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵))
21adantr 480 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵))
3 xpeq2 5659 . . . 4 (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷))
43adantl 481 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷))
52, 4uneq12d 4132 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
6 df-dju 9854 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
7 df-dju 9854 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
85, 6, 73eqtr4g 2789 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3912  c0 4296  {csn 4589   × cxp 5636  1oc1o 8427  cdju 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-opab 5170  df-xp 5644  df-dju 9854
This theorem is referenced by:  djueq1  9858  djueq2  9859  isfin5  10252  alephadd  10530
  Copyright terms: Public domain W3C validator