Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version |
Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 22238) and vector spaces (lssmre 20237)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17308, mresspw 17310, mre1cl 17312 and mreintcl 17313 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17318); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17319. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmre 17300 | . 2 class Moore | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3433 | . . 3 class V | |
4 | vc | . . . . . 6 setvar 𝑐 | |
5 | 2, 4 | wel 2108 | . . . . 5 wff 𝑥 ∈ 𝑐 |
6 | vs | . . . . . . . . 9 setvar 𝑠 | |
7 | 6 | cv 1538 | . . . . . . . 8 class 𝑠 |
8 | c0 4257 | . . . . . . . 8 class ∅ | |
9 | 7, 8 | wne 2944 | . . . . . . 7 wff 𝑠 ≠ ∅ |
10 | 7 | cint 4880 | . . . . . . . 8 class ∩ 𝑠 |
11 | 4 | cv 1538 | . . . . . . . 8 class 𝑐 |
12 | 10, 11 | wcel 2107 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
14 | 11 | cpw 4534 | . . . . . 6 class 𝒫 𝑐 |
15 | 13, 6, 14 | wral 3065 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
16 | 5, 15 | wa 396 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
17 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
18 | 17 | cpw 4534 | . . . . 5 class 𝒫 𝑥 |
19 | 18 | cpw 4534 | . . . 4 class 𝒫 𝒫 𝑥 |
20 | 16, 4, 19 | crab 3069 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
21 | 2, 3, 20 | cmpt 5158 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
22 | 1, 21 | wceq 1539 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Colors of variables: wff setvar class |
This definition is referenced by: ismre 17308 fnmre 17309 |
Copyright terms: Public domain | W3C validator |