MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mre Structured version   Visualization version   GIF version

Definition df-mre 17212
Description: Define a Moore collection, which is a family of subsets of a base set which preserve arbitrary intersection. Elements of a Moore collection are termed closed; Moore collections generalize the notion of closedness from topologies (cldmre 22137) and vector spaces (lssmre 20143) to the most general setting in which such concepts make sense. Definition of Moore collection of sets in [Schechter] p. 78. A Moore collection may also be called a closure system (Section 0.6 in [Gratzer] p. 23.) The name Moore collection is after Eliakim Hastings Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.

See ismre 17216, mresspw 17218, mre1cl 17220 and mreintcl 17221 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17226); as such the disjoint union of all Moore collections is sometimes considered as ran Moore, justified by mreunirn 17227. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.)

Assertion
Ref Expression
df-mre Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Distinct variable group:   𝑠,𝑐,𝑥

Detailed syntax breakdown of Definition df-mre
StepHypRef Expression
1 cmre 17208 . 2 class Moore
2 vx . . 3 setvar 𝑥
3 cvv 3422 . . 3 class V
4 vc . . . . . 6 setvar 𝑐
52, 4wel 2109 . . . . 5 wff 𝑥𝑐
6 vs . . . . . . . . 9 setvar 𝑠
76cv 1538 . . . . . . . 8 class 𝑠
8 c0 4253 . . . . . . . 8 class
97, 8wne 2942 . . . . . . 7 wff 𝑠 ≠ ∅
107cint 4876 . . . . . . . 8 class 𝑠
114cv 1538 . . . . . . . 8 class 𝑐
1210, 11wcel 2108 . . . . . . 7 wff 𝑠𝑐
139, 12wi 4 . . . . . 6 wff (𝑠 ≠ ∅ → 𝑠𝑐)
1411cpw 4530 . . . . . 6 class 𝒫 𝑐
1513, 6, 14wral 3063 . . . . 5 wff 𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)
165, 15wa 395 . . . 4 wff (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))
172cv 1538 . . . . . 6 class 𝑥
1817cpw 4530 . . . . 5 class 𝒫 𝑥
1918cpw 4530 . . . 4 class 𝒫 𝒫 𝑥
2016, 4, 19crab 3067 . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}
212, 3, 20cmpt 5153 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
221, 21wceq 1539 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Colors of variables: wff setvar class
This definition is referenced by:  ismre  17216  fnmre  17217
  Copyright terms: Public domain W3C validator