MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mre Structured version   Visualization version   GIF version

Definition df-mre 17306
Description: Define a Moore collection, which is a family of subsets of a base set which preserve arbitrary intersection. Elements of a Moore collection are termed closed; Moore collections generalize the notion of closedness from topologies (cldmre 22240) and vector spaces (lssmre 20239) to the most general setting in which such concepts make sense. Definition of Moore collection of sets in [Schechter] p. 78. A Moore collection may also be called a closure system (Section 0.6 in [Gratzer] p. 23.) The name Moore collection is after Eliakim Hastings Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.

See ismre 17310, mresspw 17312, mre1cl 17314 and mreintcl 17315 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17320); as such the disjoint union of all Moore collections is sometimes considered as ran Moore, justified by mreunirn 17321. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.)

Assertion
Ref Expression
df-mre Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Distinct variable group:   𝑠,𝑐,𝑥

Detailed syntax breakdown of Definition df-mre
StepHypRef Expression
1 cmre 17302 . 2 class Moore
2 vx . . 3 setvar 𝑥
3 cvv 3431 . . 3 class V
4 vc . . . . . 6 setvar 𝑐
52, 4wel 2111 . . . . 5 wff 𝑥𝑐
6 vs . . . . . . . . 9 setvar 𝑠
76cv 1541 . . . . . . . 8 class 𝑠
8 c0 4262 . . . . . . . 8 class
97, 8wne 2945 . . . . . . 7 wff 𝑠 ≠ ∅
107cint 4885 . . . . . . . 8 class 𝑠
114cv 1541 . . . . . . . 8 class 𝑐
1210, 11wcel 2110 . . . . . . 7 wff 𝑠𝑐
139, 12wi 4 . . . . . 6 wff (𝑠 ≠ ∅ → 𝑠𝑐)
1411cpw 4539 . . . . . 6 class 𝒫 𝑐
1513, 6, 14wral 3066 . . . . 5 wff 𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)
165, 15wa 396 . . . 4 wff (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))
172cv 1541 . . . . . 6 class 𝑥
1817cpw 4539 . . . . 5 class 𝒫 𝑥
1918cpw 4539 . . . 4 class 𝒫 𝒫 𝑥
2016, 4, 19crab 3070 . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}
212, 3, 20cmpt 5162 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
221, 21wceq 1542 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Colors of variables: wff setvar class
This definition is referenced by:  ismre  17310  fnmre  17311
  Copyright terms: Public domain W3C validator