| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version | ||
| Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 22963) and vector spaces (lssmre 20869)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17492, mresspw 17494, mre1cl 17496 and mreintcl 17497 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17502); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17503. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmre 17484 | . 2 class Moore | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vc | . . . . . 6 setvar 𝑐 | |
| 5 | 2, 4 | wel 2110 | . . . . 5 wff 𝑥 ∈ 𝑐 |
| 6 | vs | . . . . . . . . 9 setvar 𝑠 | |
| 7 | 6 | cv 1539 | . . . . . . . 8 class 𝑠 |
| 8 | c0 4284 | . . . . . . . 8 class ∅ | |
| 9 | 7, 8 | wne 2925 | . . . . . . 7 wff 𝑠 ≠ ∅ |
| 10 | 7 | cint 4896 | . . . . . . . 8 class ∩ 𝑠 |
| 11 | 4 | cv 1539 | . . . . . . . 8 class 𝑐 |
| 12 | 10, 11 | wcel 2109 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
| 13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
| 14 | 11 | cpw 4551 | . . . . . 6 class 𝒫 𝑐 |
| 15 | 13, 6, 14 | wral 3044 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
| 16 | 5, 15 | wa 395 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
| 17 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 18 | 17 | cpw 4551 | . . . . 5 class 𝒫 𝑥 |
| 19 | 18 | cpw 4551 | . . . 4 class 𝒫 𝒫 𝑥 |
| 20 | 16, 4, 19 | crab 3394 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
| 21 | 2, 3, 20 | cmpt 5173 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| 22 | 1, 21 | wceq 1540 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ismre 17492 fnmre 17493 |
| Copyright terms: Public domain | W3C validator |