| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version | ||
| Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 22972) and vector spaces (lssmre 20879)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17558, mresspw 17560, mre1cl 17562 and mreintcl 17563 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17568); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17569. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmre 17550 | . 2 class Moore | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3450 | . . 3 class V | |
| 4 | vc | . . . . . 6 setvar 𝑐 | |
| 5 | 2, 4 | wel 2110 | . . . . 5 wff 𝑥 ∈ 𝑐 |
| 6 | vs | . . . . . . . . 9 setvar 𝑠 | |
| 7 | 6 | cv 1539 | . . . . . . . 8 class 𝑠 |
| 8 | c0 4299 | . . . . . . . 8 class ∅ | |
| 9 | 7, 8 | wne 2926 | . . . . . . 7 wff 𝑠 ≠ ∅ |
| 10 | 7 | cint 4913 | . . . . . . . 8 class ∩ 𝑠 |
| 11 | 4 | cv 1539 | . . . . . . . 8 class 𝑐 |
| 12 | 10, 11 | wcel 2109 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
| 13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
| 14 | 11 | cpw 4566 | . . . . . 6 class 𝒫 𝑐 |
| 15 | 13, 6, 14 | wral 3045 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
| 16 | 5, 15 | wa 395 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
| 17 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 18 | 17 | cpw 4566 | . . . . 5 class 𝒫 𝑥 |
| 19 | 18 | cpw 4566 | . . . 4 class 𝒫 𝒫 𝑥 |
| 20 | 16, 4, 19 | crab 3408 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
| 21 | 2, 3, 20 | cmpt 5191 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| 22 | 1, 21 | wceq 1540 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ismre 17558 fnmre 17559 |
| Copyright terms: Public domain | W3C validator |