![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version |
Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 23101) and vector spaces (lssmre 20981)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17634, mresspw 17636, mre1cl 17638 and mreintcl 17639 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17644); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17645. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmre 17626 | . 2 class Moore | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3477 | . . 3 class V | |
4 | vc | . . . . . 6 setvar 𝑐 | |
5 | 2, 4 | wel 2106 | . . . . 5 wff 𝑥 ∈ 𝑐 |
6 | vs | . . . . . . . . 9 setvar 𝑠 | |
7 | 6 | cv 1535 | . . . . . . . 8 class 𝑠 |
8 | c0 4338 | . . . . . . . 8 class ∅ | |
9 | 7, 8 | wne 2937 | . . . . . . 7 wff 𝑠 ≠ ∅ |
10 | 7 | cint 4950 | . . . . . . . 8 class ∩ 𝑠 |
11 | 4 | cv 1535 | . . . . . . . 8 class 𝑐 |
12 | 10, 11 | wcel 2105 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
14 | 11 | cpw 4604 | . . . . . 6 class 𝒫 𝑐 |
15 | 13, 6, 14 | wral 3058 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
16 | 5, 15 | wa 395 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
17 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
18 | 17 | cpw 4604 | . . . . 5 class 𝒫 𝑥 |
19 | 18 | cpw 4604 | . . . 4 class 𝒫 𝒫 𝑥 |
20 | 16, 4, 19 | crab 3432 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
21 | 2, 3, 20 | cmpt 5230 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
22 | 1, 21 | wceq 1536 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Colors of variables: wff setvar class |
This definition is referenced by: ismre 17634 fnmre 17635 |
Copyright terms: Public domain | W3C validator |