![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version |
Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 21370) and vector spaces (lssmre 19428)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 16690, mresspw 16692, mre1cl 16694 and mreintcl 16695 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 16700); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 16701. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmre 16682 | . 2 class Moore | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3437 | . . 3 class V | |
4 | vc | . . . . . 6 setvar 𝑐 | |
5 | 2, 4 | wel 2082 | . . . . 5 wff 𝑥 ∈ 𝑐 |
6 | vs | . . . . . . . . 9 setvar 𝑠 | |
7 | 6 | cv 1521 | . . . . . . . 8 class 𝑠 |
8 | c0 4211 | . . . . . . . 8 class ∅ | |
9 | 7, 8 | wne 2984 | . . . . . . 7 wff 𝑠 ≠ ∅ |
10 | 7 | cint 4782 | . . . . . . . 8 class ∩ 𝑠 |
11 | 4 | cv 1521 | . . . . . . . 8 class 𝑐 |
12 | 10, 11 | wcel 2081 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
14 | 11 | cpw 4453 | . . . . . 6 class 𝒫 𝑐 |
15 | 13, 6, 14 | wral 3105 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
16 | 5, 15 | wa 396 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
17 | 2 | cv 1521 | . . . . . 6 class 𝑥 |
18 | 17 | cpw 4453 | . . . . 5 class 𝒫 𝑥 |
19 | 18 | cpw 4453 | . . . 4 class 𝒫 𝒫 𝑥 |
20 | 16, 4, 19 | crab 3109 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
21 | 2, 3, 20 | cmpt 5041 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
22 | 1, 21 | wceq 1522 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Colors of variables: wff setvar class |
This definition is referenced by: ismre 16690 fnmre 16691 |
Copyright terms: Public domain | W3C validator |