MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mre Structured version   Visualization version   GIF version

Definition df-mre 17089
Description: Define a Moore collection, which is a family of subsets of a base set which preserve arbitrary intersection. Elements of a Moore collection are termed closed; Moore collections generalize the notion of closedness from topologies (cldmre 21975) and vector spaces (lssmre 20003) to the most general setting in which such concepts make sense. Definition of Moore collection of sets in [Schechter] p. 78. A Moore collection may also be called a closure system (Section 0.6 in [Gratzer] p. 23.) The name Moore collection is after Eliakim Hastings Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.

See ismre 17093, mresspw 17095, mre1cl 17097 and mreintcl 17098 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17103); as such the disjoint union of all Moore collections is sometimes considered as ran Moore, justified by mreunirn 17104. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.)

Assertion
Ref Expression
df-mre Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Distinct variable group:   𝑠,𝑐,𝑥

Detailed syntax breakdown of Definition df-mre
StepHypRef Expression
1 cmre 17085 . 2 class Moore
2 vx . . 3 setvar 𝑥
3 cvv 3408 . . 3 class V
4 vc . . . . . 6 setvar 𝑐
52, 4wel 2111 . . . . 5 wff 𝑥𝑐
6 vs . . . . . . . . 9 setvar 𝑠
76cv 1542 . . . . . . . 8 class 𝑠
8 c0 4237 . . . . . . . 8 class
97, 8wne 2940 . . . . . . 7 wff 𝑠 ≠ ∅
107cint 4859 . . . . . . . 8 class 𝑠
114cv 1542 . . . . . . . 8 class 𝑐
1210, 11wcel 2110 . . . . . . 7 wff 𝑠𝑐
139, 12wi 4 . . . . . 6 wff (𝑠 ≠ ∅ → 𝑠𝑐)
1411cpw 4513 . . . . . 6 class 𝒫 𝑐
1513, 6, 14wral 3061 . . . . 5 wff 𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)
165, 15wa 399 . . . 4 wff (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))
172cv 1542 . . . . . 6 class 𝑥
1817cpw 4513 . . . . 5 class 𝒫 𝑥
1918cpw 4513 . . . 4 class 𝒫 𝒫 𝑥
2016, 4, 19crab 3065 . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}
212, 3, 20cmpt 5135 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
221, 21wceq 1543 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Colors of variables: wff setvar class
This definition is referenced by:  ismre  17093  fnmre  17094
  Copyright terms: Public domain W3C validator