Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version |
Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 22137) and vector spaces (lssmre 20143)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17216, mresspw 17218, mre1cl 17220 and mreintcl 17221 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17226); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17227. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmre 17208 | . 2 class Moore | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3422 | . . 3 class V | |
4 | vc | . . . . . 6 setvar 𝑐 | |
5 | 2, 4 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑐 |
6 | vs | . . . . . . . . 9 setvar 𝑠 | |
7 | 6 | cv 1538 | . . . . . . . 8 class 𝑠 |
8 | c0 4253 | . . . . . . . 8 class ∅ | |
9 | 7, 8 | wne 2942 | . . . . . . 7 wff 𝑠 ≠ ∅ |
10 | 7 | cint 4876 | . . . . . . . 8 class ∩ 𝑠 |
11 | 4 | cv 1538 | . . . . . . . 8 class 𝑐 |
12 | 10, 11 | wcel 2108 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
14 | 11 | cpw 4530 | . . . . . 6 class 𝒫 𝑐 |
15 | 13, 6, 14 | wral 3063 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
16 | 5, 15 | wa 395 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
17 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
18 | 17 | cpw 4530 | . . . . 5 class 𝒫 𝑥 |
19 | 18 | cpw 4530 | . . . 4 class 𝒫 𝒫 𝑥 |
20 | 16, 4, 19 | crab 3067 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
21 | 2, 3, 20 | cmpt 5153 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
22 | 1, 21 | wceq 1539 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Colors of variables: wff setvar class |
This definition is referenced by: ismre 17216 fnmre 17217 |
Copyright terms: Public domain | W3C validator |