MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mre1cl Structured version   Visualization version   GIF version

Theorem mre1cl 16924
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mre1cl (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)

Proof of Theorem mre1cl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 16920 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp2bi 1144 1 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  wne 2952  wral 3071  wss 3859  c0 4226  𝒫 cpw 4495   cint 4839  cfv 6336  Moorecmre 16912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-mre 16916
This theorem is referenced by:  mrerintcl  16927  mreriincl  16928  mreuni  16930  mremre  16934  mrcflem  16936  mrcval  16940  mrccl  16941  mrcun  16952  mrelatglb0  17862  mreclatBAD  17864  mretopd  21793
  Copyright terms: Public domain W3C validator