| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mre1cl | Structured version Visualization version GIF version | ||
| Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mre1cl | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismre 17492 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∩ cint 4895 ‘cfv 6481 Moorecmre 17484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-mre 17488 |
| This theorem is referenced by: mrerintcl 17499 mreriincl 17500 mreuni 17502 mremre 17506 mrcflem 17512 mrcval 17516 mrccl 17517 mrcun 17528 mrelatglb0 18467 mreclatBAD 18469 mretopd 23007 mreclat 49107 |
| Copyright terms: Public domain | W3C validator |