MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mre1cl Structured version   Visualization version   GIF version

Theorem mre1cl 17496
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mre1cl (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)

Proof of Theorem mre1cl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 17492 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp2bi 1146 1 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wral 3044  wss 3903  c0 4284  𝒫 cpw 4551   cint 4896  cfv 6482  Moorecmre 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-mre 17488
This theorem is referenced by:  mrerintcl  17499  mreriincl  17500  mreuni  17502  mremre  17506  mrcflem  17512  mrcval  17516  mrccl  17517  mrcun  17528  mrelatglb0  18467  mreclatBAD  18469  mretopd  22977  mreclat  48991
  Copyright terms: Public domain W3C validator