Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mre1cl | Structured version Visualization version GIF version |
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mre1cl | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismre 16920 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
2 | 1 | simp2bi 1144 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ⊆ wss 3859 ∅c0 4226 𝒫 cpw 4495 ∩ cint 4839 ‘cfv 6336 Moorecmre 16912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 df-mre 16916 |
This theorem is referenced by: mrerintcl 16927 mreriincl 16928 mreuni 16930 mremre 16934 mrcflem 16936 mrcval 16940 mrccl 16941 mrcun 16952 mrelatglb0 17862 mreclatBAD 17864 mretopd 21793 |
Copyright terms: Public domain | W3C validator |