![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreuni | Structured version Visualization version GIF version |
Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreuni | ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mre1cl 17652 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
2 | mresspw 17650 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
3 | elpwuni 5128 | . . 3 ⊢ (𝑋 ∈ 𝐶 → (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 = 𝑋)) | |
4 | 3 | biimpa 476 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐶 ⊆ 𝒫 𝑋) → ∪ 𝐶 = 𝑋) |
5 | 1, 2, 4 | syl2anc 583 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 Moorecmre 17640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 |
This theorem is referenced by: mreunirn 17659 mrcfval 17666 mrcssv 17672 mrisval 17688 mrelatlub 18632 mreclatBAD 18633 mreuniss 48579 clduni 48580 mreclat 48669 |
Copyright terms: Public domain | W3C validator |