MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreuni Structured version   Visualization version   GIF version

Theorem mreuni 17510
Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreuni (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)

Proof of Theorem mreuni
StepHypRef Expression
1 mre1cl 17504 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
2 mresspw 17502 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
3 elpwuni 5057 . . 3 (𝑋𝐶 → (𝐶 ⊆ 𝒫 𝑋 𝐶 = 𝑋))
43biimpa 476 . 2 ((𝑋𝐶𝐶 ⊆ 𝒫 𝑋) → 𝐶 = 𝑋)
51, 2, 4syl2anc 584 1 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  𝒫 cpw 4551   cuni 4860  cfv 6489  Moorecmre 17492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-mre 17496
This theorem is referenced by:  mreunirn  17511  mrcfval  17522  mrcssv  17528  mrisval  17544  mrelatlub  18476  mreclatBAD  18477  mreuniss  49061  clduni  49062  mreclat  49158
  Copyright terms: Public domain W3C validator