Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreuni | Structured version Visualization version GIF version |
Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreuni | ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mre1cl 17097 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
2 | mresspw 17095 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
3 | elpwuni 5013 | . . 3 ⊢ (𝑋 ∈ 𝐶 → (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 = 𝑋)) | |
4 | 3 | biimpa 480 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐶 ⊆ 𝒫 𝑋) → ∪ 𝐶 = 𝑋) |
5 | 1, 2, 4 | syl2anc 587 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 ‘cfv 6380 Moorecmre 17085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-mre 17089 |
This theorem is referenced by: mreunirn 17104 mrcfval 17111 mrcssv 17117 mrisval 17133 mrelatlub 18068 mreclatBAD 18069 mreuniss 45866 clduni 45867 mreclat 45956 |
Copyright terms: Public domain | W3C validator |