MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreuni Structured version   Visualization version   GIF version

Theorem mreuni 17561
Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreuni (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)

Proof of Theorem mreuni
StepHypRef Expression
1 mre1cl 17555 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
2 mresspw 17553 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
3 elpwuni 5069 . . 3 (𝑋𝐶 → (𝐶 ⊆ 𝒫 𝑋 𝐶 = 𝑋))
43biimpa 476 . 2 ((𝑋𝐶𝐶 ⊆ 𝒫 𝑋) → 𝐶 = 𝑋)
51, 2, 4syl2anc 584 1 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563   cuni 4871  cfv 6511  Moorecmre 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-mre 17547
This theorem is referenced by:  mreunirn  17562  mrcfval  17569  mrcssv  17575  mrisval  17591  mrelatlub  18521  mreclatBAD  18522  mreuniss  48888  clduni  48889  mreclat  48985
  Copyright terms: Public domain W3C validator