| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreuni | Structured version Visualization version GIF version | ||
| Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreuni | ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mre1cl 17562 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 2 | mresspw 17560 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
| 3 | elpwuni 5072 | . . 3 ⊢ (𝑋 ∈ 𝐶 → (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 = 𝑋)) | |
| 4 | 3 | biimpa 476 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐶 ⊆ 𝒫 𝑋) → ∪ 𝐶 = 𝑋) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 Moorecmre 17550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-mre 17554 |
| This theorem is referenced by: mreunirn 17569 mrcfval 17576 mrcssv 17582 mrisval 17598 mrelatlub 18528 mreclatBAD 18529 mreuniss 48892 clduni 48893 mreclat 48989 |
| Copyright terms: Public domain | W3C validator |