| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreuni | Structured version Visualization version GIF version | ||
| Description: Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreuni | ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mre1cl 17491 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 2 | mresspw 17489 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
| 3 | elpwuni 5048 | . . 3 ⊢ (𝑋 ∈ 𝐶 → (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 = 𝑋)) | |
| 4 | 3 | biimpa 476 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐶 ⊆ 𝒫 𝑋) → ∪ 𝐶 = 𝑋) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4545 ∪ cuni 4854 ‘cfv 6476 Moorecmre 17479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-mre 17483 |
| This theorem is referenced by: mreunirn 17498 mrcfval 17509 mrcssv 17515 mrisval 17531 mrelatlub 18463 mreclatBAD 18464 mreuniss 48931 clduni 48932 mreclat 49028 |
| Copyright terms: Public domain | W3C validator |