MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Visualization version   GIF version

Theorem mreintcl 17640
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)

Proof of Theorem mreintcl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5339 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶𝑆𝐶))
21biimpar 477 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝐶)
323adant3 1131 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶)
4 ismre 17635 . . . 4 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
54simp3bi 1146 . . 3 (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
653ad2ant1 1132 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
7 simp3 1137 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 neeq1 3001 . . . . 5 (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅))
9 inteq 4954 . . . . . 6 (𝑠 = 𝑆 𝑠 = 𝑆)
109eleq1d 2824 . . . . 5 (𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶))
118, 10imbi12d 344 . . . 4 (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → 𝑠𝐶) ↔ (𝑆 ≠ ∅ → 𝑆𝐶)))
1211rspcva 3620 . . 3 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → (𝑆 ≠ ∅ → 𝑆𝐶))
13123impia 1116 . 2 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶) ∧ 𝑆 ≠ ∅) → 𝑆𝐶)
143, 6, 7, 13syl3anc 1370 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wss 3963  c0 4339  𝒫 cpw 4605   cint 4951  cfv 6563  Moorecmre 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-mre 17631
This theorem is referenced by:  mreiincl  17641  mrerintcl  17642  mreincl  17644  mremre  17649  submre  17650  mrcflem  17651  mrelatglb  18618  mreclatBAD  18621  mrelatglbALT  48785  mreclat  48786
  Copyright terms: Public domain W3C validator