Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version |
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5271 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶)) | |
2 | 1 | biimpar 477 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ∈ 𝒫 𝐶) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶) |
4 | ismre 17280 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
5 | 4 | simp3bi 1145 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
6 | 5 | 3ad2ant1 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
7 | simp3 1136 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
8 | neeq1 3007 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅)) | |
9 | inteq 4887 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆) | |
10 | 9 | eleq1d 2824 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶)) |
11 | 8, 10 | imbi12d 344 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ↔ (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶))) |
12 | 11 | rspcva 3558 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) → (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶)) |
13 | 12 | 3impia 1115 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
14 | 3, 6, 7, 13 | syl3anc 1369 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 ∩ cint 4884 ‘cfv 6430 Moorecmre 17272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-mre 17276 |
This theorem is referenced by: mreiincl 17286 mrerintcl 17287 mreincl 17289 mremre 17294 submre 17295 mrcflem 17296 mrelatglb 18259 mreclatBAD 18262 mrelatglbALT 46234 mreclat 46235 |
Copyright terms: Public domain | W3C validator |