MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Visualization version   GIF version

Theorem mreintcl 16569
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)

Proof of Theorem mreintcl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5020 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶𝑆𝐶))
21biimpar 470 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝐶)
323adant3 1163 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶)
4 ismre 16564 . . . 4 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
54simp3bi 1178 . . 3 (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
653ad2ant1 1164 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
7 simp3 1169 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 neeq1 3034 . . . . 5 (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅))
9 inteq 4671 . . . . . 6 (𝑠 = 𝑆 𝑠 = 𝑆)
109eleq1d 2864 . . . . 5 (𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶))
118, 10imbi12d 336 . . . 4 (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → 𝑠𝐶) ↔ (𝑆 ≠ ∅ → 𝑆𝐶)))
1211rspcva 3496 . . 3 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → (𝑆 ≠ ∅ → 𝑆𝐶))
13123impia 1146 . 2 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶) ∧ 𝑆 ≠ ∅) → 𝑆𝐶)
143, 6, 7, 13syl3anc 1491 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  wne 2972  wral 3090  wss 3770  c0 4116  𝒫 cpw 4350   cint 4668  cfv 6102  Moorecmre 16556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-int 4669  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-iota 6065  df-fun 6104  df-fv 6110  df-mre 16560
This theorem is referenced by:  mreiincl  16570  mrerintcl  16571  mreincl  16573  mremre  16578  submre  16579  mrcflem  16580  mrelatglb  17498  mreclatBAD  17501
  Copyright terms: Public domain W3C validator