MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Visualization version   GIF version

Theorem mreintcl 17536
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)

Proof of Theorem mreintcl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5344 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶𝑆𝐶))
21biimpar 479 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝐶)
323adant3 1133 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶)
4 ismre 17531 . . . 4 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
54simp3bi 1148 . . 3 (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
653ad2ant1 1134 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
7 simp3 1139 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 neeq1 3004 . . . . 5 (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅))
9 inteq 4953 . . . . . 6 (𝑠 = 𝑆 𝑠 = 𝑆)
109eleq1d 2819 . . . . 5 (𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶))
118, 10imbi12d 345 . . . 4 (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → 𝑠𝐶) ↔ (𝑆 ≠ ∅ → 𝑆𝐶)))
1211rspcva 3611 . . 3 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → (𝑆 ≠ ∅ → 𝑆𝐶))
13123impia 1118 . 2 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶) ∧ 𝑆 ≠ ∅) → 𝑆𝐶)
143, 6, 7, 13syl3anc 1372 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wss 3948  c0 4322  𝒫 cpw 4602   cint 4950  cfv 6541  Moorecmre 17523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6493  df-fun 6543  df-fv 6549  df-mre 17527
This theorem is referenced by:  mreiincl  17537  mrerintcl  17538  mreincl  17540  mremre  17545  submre  17546  mrcflem  17547  mrelatglb  18510  mreclatBAD  18513  mrelatglbALT  47575  mreclat  47576
  Copyright terms: Public domain W3C validator