MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Visualization version   GIF version

Theorem mreintcl 16924
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)

Proof of Theorem mreintcl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5214 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶𝑆𝐶))
21biimpar 481 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝐶)
323adant3 1129 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶)
4 ismre 16919 . . . 4 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
54simp3bi 1144 . . 3 (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
653ad2ant1 1130 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
7 simp3 1135 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 neeq1 3013 . . . . 5 (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅))
9 inteq 4841 . . . . . 6 (𝑠 = 𝑆 𝑠 = 𝑆)
109eleq1d 2836 . . . . 5 (𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶))
118, 10imbi12d 348 . . . 4 (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → 𝑠𝐶) ↔ (𝑆 ≠ ∅ → 𝑆𝐶)))
1211rspcva 3539 . . 3 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → (𝑆 ≠ ∅ → 𝑆𝐶))
13123impia 1114 . 2 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶) ∧ 𝑆 ≠ ∅) → 𝑆𝐶)
143, 6, 7, 13syl3anc 1368 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wss 3858  c0 4225  𝒫 cpw 4494   cint 4838  cfv 6335  Moorecmre 16911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-int 4839  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-mre 16915
This theorem is referenced by:  mreiincl  16925  mrerintcl  16926  mreincl  16928  mremre  16933  submre  16934  mrcflem  16935  mrelatglb  17860  mreclatBAD  17863
  Copyright terms: Public domain W3C validator