![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version |
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreintcl | β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β β© π β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5343 | . . . 4 β’ (πΆ β (Mooreβπ) β (π β π« πΆ β π β πΆ)) | |
2 | 1 | biimpar 478 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π β πΆ) β π β π« πΆ) |
3 | 2 | 3adant3 1132 | . 2 β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β π β π« πΆ) |
4 | ismre 17530 | . . . 4 β’ (πΆ β (Mooreβπ) β (πΆ β π« π β§ π β πΆ β§ βπ β π« πΆ(π β β β β© π β πΆ))) | |
5 | 4 | simp3bi 1147 | . . 3 β’ (πΆ β (Mooreβπ) β βπ β π« πΆ(π β β β β© π β πΆ)) |
6 | 5 | 3ad2ant1 1133 | . 2 β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β βπ β π« πΆ(π β β β β© π β πΆ)) |
7 | simp3 1138 | . 2 β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β π β β ) | |
8 | neeq1 3003 | . . . . 5 β’ (π = π β (π β β β π β β )) | |
9 | inteq 4952 | . . . . . 6 β’ (π = π β β© π = β© π) | |
10 | 9 | eleq1d 2818 | . . . . 5 β’ (π = π β (β© π β πΆ β β© π β πΆ)) |
11 | 8, 10 | imbi12d 344 | . . . 4 β’ (π = π β ((π β β β β© π β πΆ) β (π β β β β© π β πΆ))) |
12 | 11 | rspcva 3610 | . . 3 β’ ((π β π« πΆ β§ βπ β π« πΆ(π β β β β© π β πΆ)) β (π β β β β© π β πΆ)) |
13 | 12 | 3impia 1117 | . 2 β’ ((π β π« πΆ β§ βπ β π« πΆ(π β β β β© π β πΆ) β§ π β β ) β β© π β πΆ) |
14 | 3, 6, 7, 13 | syl3anc 1371 | 1 β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β β© π β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3947 β c0 4321 π« cpw 4601 β© cint 4949 βcfv 6540 Moorecmre 17522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-mre 17526 |
This theorem is referenced by: mreiincl 17536 mrerintcl 17537 mreincl 17539 mremre 17544 submre 17545 mrcflem 17546 mrelatglb 18509 mreclatBAD 18512 mrelatglbALT 47574 mreclat 47575 |
Copyright terms: Public domain | W3C validator |