Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version |
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5277 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶)) | |
2 | 1 | biimpar 479 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ∈ 𝒫 𝐶) |
3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶) |
4 | ismre 17348 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
5 | 4 | simp3bi 1147 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
7 | simp3 1138 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
8 | neeq1 3004 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅)) | |
9 | inteq 4889 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆) | |
10 | 9 | eleq1d 2821 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶)) |
11 | 8, 10 | imbi12d 345 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ↔ (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶))) |
12 | 11 | rspcva 3564 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) → (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶)) |
13 | 12 | 3impia 1117 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
14 | 3, 6, 7, 13 | syl3anc 1371 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∩ cint 4886 ‘cfv 6458 Moorecmre 17340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-mre 17344 |
This theorem is referenced by: mreiincl 17354 mrerintcl 17355 mreincl 17357 mremre 17362 submre 17363 mrcflem 17364 mrelatglb 18327 mreclatBAD 18330 mrelatglbALT 46526 mreclat 46527 |
Copyright terms: Public domain | W3C validator |