MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Visualization version   GIF version

Theorem mreintcl 17497
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)

Proof of Theorem mreintcl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5269 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶𝑆𝐶))
21biimpar 477 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝐶)
323adant3 1132 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶)
4 ismre 17492 . . . 4 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
54simp3bi 1147 . . 3 (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
653ad2ant1 1133 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
7 simp3 1138 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 neeq1 2990 . . . . 5 (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅))
9 inteq 4898 . . . . . 6 (𝑠 = 𝑆 𝑠 = 𝑆)
109eleq1d 2816 . . . . 5 (𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶))
118, 10imbi12d 344 . . . 4 (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → 𝑠𝐶) ↔ (𝑆 ≠ ∅ → 𝑆𝐶)))
1211rspcva 3570 . . 3 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → (𝑆 ≠ ∅ → 𝑆𝐶))
13123impia 1117 . 2 ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶) ∧ 𝑆 ≠ ∅) → 𝑆𝐶)
143, 6, 7, 13syl3anc 1373 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  𝒫 cpw 4547   cint 4895  cfv 6481  Moorecmre 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-mre 17488
This theorem is referenced by:  mreiincl  17498  mrerintcl  17499  mreincl  17501  mremre  17506  submre  17507  mrcflem  17512  mrelatglb  18466  mreclatBAD  18469  mrelatglbALT  49106  mreclat  49107
  Copyright terms: Public domain W3C validator