| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version | ||
| Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g 5288 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶)) | |
| 2 | 1 | biimpar 477 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ∈ 𝒫 𝐶) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶) |
| 4 | ismre 17551 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
| 5 | 4 | simp3bi 1147 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 7 | simp3 1138 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 8 | neeq1 2987 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅)) | |
| 9 | inteq 4913 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆) | |
| 10 | 9 | eleq1d 2813 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶)) |
| 11 | 8, 10 | imbi12d 344 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ↔ (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶))) |
| 12 | 11 | rspcva 3586 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) → (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶)) |
| 13 | 12 | 3impia 1117 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| 14 | 3, 6, 7, 13 | syl3anc 1373 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∩ cint 4910 ‘cfv 6511 Moorecmre 17543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-mre 17547 |
| This theorem is referenced by: mreiincl 17557 mrerintcl 17558 mreincl 17560 mremre 17565 submre 17566 mrcflem 17567 mrelatglb 18519 mreclatBAD 18522 mrelatglbALT 48984 mreclat 48985 |
| Copyright terms: Public domain | W3C validator |