| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version | ||
| Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g 5308 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶)) | |
| 2 | 1 | biimpar 477 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ∈ 𝒫 𝐶) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶) |
| 4 | ismre 17607 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
| 5 | 4 | simp3bi 1147 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 7 | simp3 1138 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 8 | neeq1 2995 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅)) | |
| 9 | inteq 4930 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆) | |
| 10 | 9 | eleq1d 2820 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶)) |
| 11 | 8, 10 | imbi12d 344 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ↔ (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶))) |
| 12 | 11 | rspcva 3604 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) → (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶)) |
| 13 | 12 | 3impia 1117 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| 14 | 3, 6, 7, 13 | syl3anc 1373 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∩ cint 4927 ‘cfv 6536 Moorecmre 17599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-mre 17603 |
| This theorem is referenced by: mreiincl 17613 mrerintcl 17614 mreincl 17616 mremre 17621 submre 17622 mrcflem 17623 mrelatglb 18575 mreclatBAD 18578 mrelatglbALT 48950 mreclat 48951 |
| Copyright terms: Public domain | W3C validator |