MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmre Structured version   Visualization version   GIF version

Theorem fnmre 17559
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 22818 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnmre Moore Fn V

Proof of Theorem fnmre
Dummy variables 𝑐 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 5335 . . . 4 𝒫 𝑥 ∈ V
21pwex 5338 . . 3 𝒫 𝒫 𝑥 ∈ V
32rabex 5297 . 2 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
4 df-mre 17554 . 2 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
53, 4fnmpti 6664 1 Moore Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  c0 4299  𝒫 cpw 4566   cint 4913   Fn wfn 6509  Moorecmre 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-fun 6516  df-fn 6517  df-mre 17554
This theorem is referenced by:  mreunirn  17569
  Copyright terms: Public domain W3C validator