Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmre Structured version   Visualization version   GIF version

Theorem fnmre 16874
 Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 21570 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnmre Moore Fn V

Proof of Theorem fnmre
Dummy variables 𝑐 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 5247 . . . 4 𝒫 𝑥 ∈ V
21pwex 5250 . . 3 𝒫 𝒫 𝑥 ∈ V
32rabex 5203 . 2 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
4 df-mre 16869 . 2 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
53, 4fnmpti 6471 1 Moore Fn V
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  {crab 3110  Vcvv 3442  ∅c0 4246  𝒫 cpw 4500  ∩ cint 4842   Fn wfn 6327  Moorecmre 16865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rab 3115  df-v 3444  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-fun 6334  df-fn 6335  df-mre 16869 This theorem is referenced by:  mreunirn  16884
 Copyright terms: Public domain W3C validator