![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmre | Structured version Visualization version GIF version |
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 21239 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnmre | ⊢ Moore Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5132 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5135 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | 2 | rabex 5092 | . 2 ⊢ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} ∈ V |
4 | df-mre 16718 | . 2 ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | |
5 | 3, 4 | fnmpti 6323 | 1 ⊢ Moore Fn V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 {crab 3092 Vcvv 3415 ∅c0 4180 𝒫 cpw 4423 ∩ cint 4750 Fn wfn 6185 Moorecmre 16714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-fun 6192 df-fn 6193 df-mre 16718 |
This theorem is referenced by: mreunirn 16733 |
Copyright terms: Public domain | W3C validator |