MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmre Structured version   Visualization version   GIF version

Theorem fnmre 17634
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 22930 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnmre Moore Fn V

Proof of Theorem fnmre
Dummy variables 𝑐 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 5377 . . . 4 𝒫 𝑥 ∈ V
21pwex 5380 . . 3 𝒫 𝒫 𝑥 ∈ V
32rabex 5339 . 2 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
4 df-mre 17629 . 2 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
53, 4fnmpti 6711 1 Moore Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  c0 4333  𝒫 cpw 4600   cint 4946   Fn wfn 6556  Moorecmre 17625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-fun 6563  df-fn 6564  df-mre 17629
This theorem is referenced by:  mreunirn  17644
  Copyright terms: Public domain W3C validator