Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmre | Structured version Visualization version GIF version |
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 22073 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnmre | ⊢ Moore Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5300 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5303 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | 2 | rabex 5256 | . 2 ⊢ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} ∈ V |
4 | df-mre 17295 | . 2 ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | |
5 | 3, 4 | fnmpti 6576 | 1 ⊢ Moore Fn V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 ∩ cint 4879 Fn wfn 6428 Moorecmre 17291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 df-mre 17295 |
This theorem is referenced by: mreunirn 17310 |
Copyright terms: Public domain | W3C validator |