Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmre | Structured version Visualization version GIF version |
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 21981 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnmre | ⊢ Moore Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5295 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5298 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | 2 | rabex 5251 | . 2 ⊢ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} ∈ V |
4 | df-mre 17212 | . 2 ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | |
5 | 3, 4 | fnmpti 6560 | 1 ⊢ Moore Fn V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 ∩ cint 4876 Fn wfn 6413 Moorecmre 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 df-mre 17212 |
This theorem is referenced by: mreunirn 17227 |
Copyright terms: Public domain | W3C validator |