![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreunirn | Structured version Visualization version GIF version |
Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreunirn | ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmre 17636 | . . . 4 ⊢ Moore Fn V | |
2 | fnunirn 7274 | . . . 4 ⊢ (Moore Fn V → (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)) |
4 | mreuni 17645 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑥) → ∪ 𝐶 = 𝑥) | |
5 | 4 | fveq2d 6911 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑥) → (Moore‘∪ 𝐶) = (Moore‘𝑥)) |
6 | 5 | eleq2d 2825 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘∪ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥))) |
7 | 6 | ibir 268 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
8 | 7 | rexlimivw 3149 | . . 3 ⊢ (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐶 ∈ ∪ ran Moore → 𝐶 ∈ (Moore‘∪ 𝐶)) |
10 | fvssunirn 6940 | . . 3 ⊢ (Moore‘∪ 𝐶) ⊆ ∪ ran Moore | |
11 | 10 | sseli 3991 | . 2 ⊢ (𝐶 ∈ (Moore‘∪ 𝐶) → 𝐶 ∈ ∪ ran Moore) |
12 | 9, 11 | impbii 209 | 1 ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∪ cuni 4912 ran crn 5690 Fn wfn 6558 ‘cfv 6563 Moorecmre 17627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-mre 17631 |
This theorem is referenced by: fnmrc 17652 mrcfval 17653 |
Copyright terms: Public domain | W3C validator |