| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreunirn | Structured version Visualization version GIF version | ||
| Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreunirn | ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmre 17493 | . . . 4 ⊢ Moore Fn V | |
| 2 | fnunirn 7190 | . . . 4 ⊢ (Moore Fn V → (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)) |
| 4 | mreuni 17502 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑥) → ∪ 𝐶 = 𝑥) | |
| 5 | 4 | fveq2d 6826 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑥) → (Moore‘∪ 𝐶) = (Moore‘𝑥)) |
| 6 | 5 | eleq2d 2814 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘∪ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥))) |
| 7 | 6 | ibir 268 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 8 | 7 | rexlimivw 3126 | . . 3 ⊢ (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐶 ∈ ∪ ran Moore → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 10 | fvssunirn 6853 | . . 3 ⊢ (Moore‘∪ 𝐶) ⊆ ∪ ran Moore | |
| 11 | 10 | sseli 3931 | . 2 ⊢ (𝐶 ∈ (Moore‘∪ 𝐶) → 𝐶 ∈ ∪ ran Moore) |
| 12 | 9, 11 | impbii 209 | 1 ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ∪ cuni 4858 ran crn 5620 Fn wfn 6477 ‘cfv 6482 Moorecmre 17484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-mre 17488 |
| This theorem is referenced by: fnmrc 17513 mrcfval 17514 |
| Copyright terms: Public domain | W3C validator |