MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreunirn Structured version   Visualization version   GIF version

Theorem mreunirn 17503
Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreunirn (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))

Proof of Theorem mreunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnmre 17493 . . . 4 Moore Fn V
2 fnunirn 7187 . . . 4 (Moore Fn V → (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)))
31, 2ax-mp 5 . . 3 (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))
4 mreuni 17502 . . . . . . 7 (𝐶 ∈ (Moore‘𝑥) → 𝐶 = 𝑥)
54fveq2d 6826 . . . . . 6 (𝐶 ∈ (Moore‘𝑥) → (Moore‘ 𝐶) = (Moore‘𝑥))
65eleq2d 2817 . . . . 5 (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥)))
76ibir 268 . . . 4 (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
87rexlimivw 3129 . . 3 (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
93, 8sylbi 217 . 2 (𝐶 ran Moore → 𝐶 ∈ (Moore‘ 𝐶))
10 fvssunirn 6853 . . 3 (Moore‘ 𝐶) ⊆ ran Moore
1110sseli 3925 . 2 (𝐶 ∈ (Moore‘ 𝐶) → 𝐶 ran Moore)
129, 11impbii 209 1 (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wrex 3056  Vcvv 3436   cuni 4856  ran crn 5615   Fn wfn 6476  cfv 6481  Moorecmre 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-mre 17488
This theorem is referenced by:  fnmrc  17513  mrcfval  17514
  Copyright terms: Public domain W3C validator