MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreunirn Structured version   Visualization version   GIF version

Theorem mreunirn 17415
Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreunirn (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))

Proof of Theorem mreunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnmre 17405 . . . 4 Moore Fn V
2 fnunirn 7195 . . . 4 (Moore Fn V → (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)))
31, 2ax-mp 5 . . 3 (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))
4 mreuni 17414 . . . . . . 7 (𝐶 ∈ (Moore‘𝑥) → 𝐶 = 𝑥)
54fveq2d 6841 . . . . . 6 (𝐶 ∈ (Moore‘𝑥) → (Moore‘ 𝐶) = (Moore‘𝑥))
65eleq2d 2823 . . . . 5 (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥)))
76ibir 268 . . . 4 (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
87rexlimivw 3146 . . 3 (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
93, 8sylbi 216 . 2 (𝐶 ran Moore → 𝐶 ∈ (Moore‘ 𝐶))
10 fvssunirn 6870 . . 3 (Moore‘ 𝐶) ⊆ ran Moore
1110sseli 3938 . 2 (𝐶 ∈ (Moore‘ 𝐶) → 𝐶 ran Moore)
129, 11impbii 208 1 (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wrex 3071  Vcvv 3443   cuni 4863  ran crn 5631   Fn wfn 6486  cfv 6491  Moorecmre 17396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-iota 6443  df-fun 6493  df-fn 6494  df-fv 6499  df-mre 17400
This theorem is referenced by:  fnmrc  17421  mrcfval  17422
  Copyright terms: Public domain W3C validator