MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreunirn Structured version   Visualization version   GIF version

Theorem mreunirn 17562
Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreunirn (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))

Proof of Theorem mreunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnmre 17552 . . . 4 Moore Fn V
2 fnunirn 7228 . . . 4 (Moore Fn V → (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)))
31, 2ax-mp 5 . . 3 (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))
4 mreuni 17561 . . . . . . 7 (𝐶 ∈ (Moore‘𝑥) → 𝐶 = 𝑥)
54fveq2d 6862 . . . . . 6 (𝐶 ∈ (Moore‘𝑥) → (Moore‘ 𝐶) = (Moore‘𝑥))
65eleq2d 2814 . . . . 5 (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥)))
76ibir 268 . . . 4 (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
87rexlimivw 3130 . . 3 (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
93, 8sylbi 217 . 2 (𝐶 ran Moore → 𝐶 ∈ (Moore‘ 𝐶))
10 fvssunirn 6891 . . 3 (Moore‘ 𝐶) ⊆ ran Moore
1110sseli 3942 . 2 (𝐶 ∈ (Moore‘ 𝐶) → 𝐶 ran Moore)
129, 11impbii 209 1 (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wrex 3053  Vcvv 3447   cuni 4871  ran crn 5639   Fn wfn 6506  cfv 6511  Moorecmre 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-mre 17547
This theorem is referenced by:  fnmrc  17568  mrcfval  17569
  Copyright terms: Public domain W3C validator