| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreunirn | Structured version Visualization version GIF version | ||
| Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreunirn | ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmre 17603 | . . . 4 ⊢ Moore Fn V | |
| 2 | fnunirn 7246 | . . . 4 ⊢ (Moore Fn V → (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐶 ∈ ∪ ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)) |
| 4 | mreuni 17612 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑥) → ∪ 𝐶 = 𝑥) | |
| 5 | 4 | fveq2d 6880 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑥) → (Moore‘∪ 𝐶) = (Moore‘𝑥)) |
| 6 | 5 | eleq2d 2820 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘∪ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥))) |
| 7 | 6 | ibir 268 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 8 | 7 | rexlimivw 3137 | . . 3 ⊢ (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐶 ∈ ∪ ran Moore → 𝐶 ∈ (Moore‘∪ 𝐶)) |
| 10 | fvssunirn 6909 | . . 3 ⊢ (Moore‘∪ 𝐶) ⊆ ∪ ran Moore | |
| 11 | 10 | sseli 3954 | . 2 ⊢ (𝐶 ∈ (Moore‘∪ 𝐶) → 𝐶 ∈ ∪ ran Moore) |
| 12 | 9, 11 | impbii 209 | 1 ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∪ cuni 4883 ran crn 5655 Fn wfn 6526 ‘cfv 6531 Moorecmre 17594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-mre 17598 |
| This theorem is referenced by: fnmrc 17619 mrcfval 17620 |
| Copyright terms: Public domain | W3C validator |