MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mresspw Structured version   Visualization version   GIF version

Theorem mresspw 16851
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mresspw (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)

Proof of Theorem mresspw
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 16849 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp1bi 1137 1 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wne 3013  wral 3135  wss 3933  c0 4288  𝒫 cpw 4535   cint 4867  cfv 6348  Moorecmre 16841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-mre 16845
This theorem is referenced by:  mress  16852  mrerintcl  16856  mreuni  16859  mremre  16863  isacs2  16912  mreacs  16917  isacs3lem  17764  dmdprdd  19050  dprdfeq0  19073  dprdss  19080  dprdz  19081  subgdmdprd  19085  subgdprd  19086  dprd2dlem1  19092  dprd2da  19093  dmdprdsplit2lem  19096  mretopd  21628  ismrc  39176
  Copyright terms: Public domain W3C validator