MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mresspw Structured version   Visualization version   GIF version

Theorem mresspw 17650
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mresspw (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)

Proof of Theorem mresspw
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 17648 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp1bi 1145 1 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  𝒫 cpw 4622   cint 4970  cfv 6573  Moorecmre 17640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mre 17644
This theorem is referenced by:  mress  17651  mrerintcl  17655  mreuni  17658  mremre  17662  isacs2  17711  mreacs  17716  isacs3lem  18612  dmdprdd  20043  dprdfeq0  20066  dprdss  20073  dprdz  20074  subgdmdprd  20078  subgdprd  20079  dprd2dlem1  20085  dprd2da  20086  dmdprdsplit2lem  20089  mretopd  23121  ismrc  42657
  Copyright terms: Public domain W3C validator