![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mresspw | Structured version Visualization version GIF version |
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mresspw | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismre 17516 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
2 | 1 | simp1bi 1145 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2939 ∀wral 3060 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4596 ∩ cint 4943 ‘cfv 6532 Moorecmre 17508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-mre 17512 |
This theorem is referenced by: mress 17519 mrerintcl 17523 mreuni 17526 mremre 17530 isacs2 17579 mreacs 17584 isacs3lem 18477 dmdprdd 19828 dprdfeq0 19851 dprdss 19858 dprdz 19859 subgdmdprd 19863 subgdprd 19864 dprd2dlem1 19870 dprd2da 19871 dmdprdsplit2lem 19874 mretopd 22525 ismrc 41208 |
Copyright terms: Public domain | W3C validator |