MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mresspw Structured version   Visualization version   GIF version

Theorem mresspw 17560
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mresspw (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)

Proof of Theorem mresspw
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 17558 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp1bi 1145 1 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299  𝒫 cpw 4566   cint 4913  cfv 6514  Moorecmre 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-mre 17554
This theorem is referenced by:  mress  17561  mrerintcl  17565  mreuni  17568  mremre  17572  isacs2  17621  mreacs  17626  isacs3lem  18508  dmdprdd  19938  dprdfeq0  19961  dprdss  19968  dprdz  19969  subgdmdprd  19973  subgdprd  19974  dprd2dlem1  19980  dprd2da  19981  dmdprdsplit2lem  19984  mretopd  22986  ismrc  42696
  Copyright terms: Public domain W3C validator