Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldmre | Structured version Visualization version GIF version |
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldmre | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 22179 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | 2 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋) |
4 | 1 | topcld 22184 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
5 | intcld 22189 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ (Clsd‘𝐽)) | |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
7 | 6 | 3adant1 1129 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
8 | 3, 4, 7 | ismred 17309 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∪ cuni 4845 ∩ cint 4885 ‘cfv 6432 Moorecmre 17289 Topctop 22040 Clsdccld 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 df-mre 17293 df-top 22041 df-cld 22168 |
This theorem is referenced by: mrccls 22228 cldmreon 22243 mreclatdemoBAD 22245 |
Copyright terms: Public domain | W3C validator |