MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmre Structured version   Visualization version   GIF version

Theorem cldmre 22137
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldmre (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))

Proof of Theorem cldmre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21cldss2 22089 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
32a1i 11 . 2 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
41topcld 22094 . 2 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
5 intcld 22099 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
65ancoms 458 . . 3 ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
763adant1 1128 . 2 ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
83, 4, 7ismred 17228 1 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876  cfv 6418  Moorecmre 17208  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-mre 17212  df-top 21951  df-cld 22078
This theorem is referenced by:  mrccls  22138  cldmreon  22153  mreclatdemoBAD  22155
  Copyright terms: Public domain W3C validator