| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldmre | Structured version Visualization version GIF version | ||
| Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldmre | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss2 22915 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋) |
| 4 | 1 | topcld 22920 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 5 | intcld 22925 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ (Clsd‘𝐽)) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
| 8 | 3, 4, 7 | ismred 17504 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 ∩ cint 4896 ‘cfv 6482 Moorecmre 17484 Topctop 22778 Clsdccld 22901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-mre 17488 df-top 22779 df-cld 22904 |
| This theorem is referenced by: mrccls 22964 cldmreon 22979 mreclatdemoBAD 22981 |
| Copyright terms: Public domain | W3C validator |