MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmre Structured version   Visualization version   GIF version

Theorem cldmre 21290
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldmre (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))

Proof of Theorem cldmre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21cldss2 21242 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
32a1i 11 . 2 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
41topcld 21247 . 2 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
5 intcld 21252 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
65ancoms 452 . . 3 ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
763adant1 1121 . 2 ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
83, 4, 7ismred 16648 1 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wne 2969  wss 3792  c0 4141  𝒫 cpw 4379   cuni 4671   cint 4710  cfv 6135  Moorecmre 16628  Topctop 21105  Clsdccld 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143  df-mre 16632  df-top 21106  df-cld 21231
This theorem is referenced by:  mrccls  21291  cldmreon  21306  mreclatdemoBAD  21308
  Copyright terms: Public domain W3C validator