Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldmre | Structured version Visualization version GIF version |
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldmre | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 22181 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | 2 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋) |
4 | 1 | topcld 22186 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
5 | intcld 22191 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ (Clsd‘𝐽)) | |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
7 | 6 | 3adant1 1129 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
8 | 3, 4, 7 | ismred 17311 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Moorecmre 17291 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-mre 17295 df-top 22043 df-cld 22170 |
This theorem is referenced by: mrccls 22230 cldmreon 22245 mreclatdemoBAD 22247 |
Copyright terms: Public domain | W3C validator |