MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmre Structured version   Visualization version   GIF version

Theorem cldmre 23102
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldmre (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))

Proof of Theorem cldmre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21cldss2 23054 . . 3 (Clsd‘𝐽) ⊆ 𝒫 𝑋
32a1i 11 . 2 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
41topcld 23059 . 2 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
5 intcld 23064 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
65ancoms 458 . . 3 ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
763adant1 1129 . 2 ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Clsd‘𝐽))
83, 4, 7ismred 17647 1 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951  cfv 6563  Moorecmre 17627  Topctop 22915  Clsdccld 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-mre 17631  df-top 22916  df-cld 23043
This theorem is referenced by:  mrccls  23103  cldmreon  23118  mreclatdemoBAD  23120
  Copyright terms: Public domain W3C validator