| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldmre | Structured version Visualization version GIF version | ||
| Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldmre | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss2 22945 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋) |
| 4 | 1 | topcld 22950 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 5 | intcld 22955 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ (Clsd‘𝐽)) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
| 8 | 3, 4, 7 | ismred 17504 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 ∩ cint 4895 ‘cfv 6481 Moorecmre 17484 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-mre 17488 df-top 22809 df-cld 22934 |
| This theorem is referenced by: mrccls 22994 cldmreon 23009 mreclatdemoBAD 23011 |
| Copyright terms: Public domain | W3C validator |