Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 48864
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 48855.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 48867, prstchom 48878, and prstcthin 48877. Other important properties include prstcbas 48868, prstcleval 48869, prstcle 48871, prstcocval 48872, prstcoc 48874, prstchom2 48879, and prstcprs 48876. Use those instead.

Note that the defining property prstchom 48878 is equivalent to prstchom2 48879 given prstcthin 48877. See thincn0eu 48832 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 48863 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18350 . . 3 class Proset
42cv 1536 . . . . 5 class 𝑘
5 cnx 17227 . . . . . . 7 class ndx
6 chom 17309 . . . . . . 7 class Hom
75, 6cfv 6563 . . . . . 6 class (Hom ‘ndx)
8 cple 17305 . . . . . . . 8 class le
94, 8cfv 6563 . . . . . . 7 class (le‘𝑘)
10 c1o 8498 . . . . . . . 8 class 1o
1110csn 4631 . . . . . . 7 class {1o}
129, 11cxp 5687 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4637 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17197 . . . . 5 class sSet
154, 13, 14co 7431 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17310 . . . . . 6 class comp
175, 16cfv 6563 . . . . 5 class (comp‘ndx)
18 c0 4339 . . . . 5 class
1917, 18cop 4637 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7431 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5231 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1537 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  48865
  Copyright terms: Public domain W3C validator