![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-prstc | Structured version Visualization version GIF version |
Description: Definition of the
function converting a preordered set to a category.
Justified by prsthinc 48721.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 48733, prstchom 48744, and prstcthin 48743. Other important properties include prstcbas 48734, prstcleval 48735, prstcle 48737, prstcocval 48738, prstcoc 48740, prstchom2 48745, and prstcprs 48742. Use those instead. Note that the defining property prstchom 48744 is equivalent to prstchom2 48745 given prstcthin 48743. See thincn0eu 48699 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-prstc | ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cprstc 48729 | . 2 class ProsetToCat | |
2 | vk | . . 3 setvar 𝑘 | |
3 | cproset 18363 | . . 3 class Proset | |
4 | 2 | cv 1536 | . . . . 5 class 𝑘 |
5 | cnx 17240 | . . . . . . 7 class ndx | |
6 | chom 17322 | . . . . . . 7 class Hom | |
7 | 5, 6 | cfv 6573 | . . . . . 6 class (Hom ‘ndx) |
8 | cple 17318 | . . . . . . . 8 class le | |
9 | 4, 8 | cfv 6573 | . . . . . . 7 class (le‘𝑘) |
10 | c1o 8515 | . . . . . . . 8 class 1o | |
11 | 10 | csn 4648 | . . . . . . 7 class {1o} |
12 | 9, 11 | cxp 5698 | . . . . . 6 class ((le‘𝑘) × {1o}) |
13 | 7, 12 | cop 4654 | . . . . 5 class 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉 |
14 | csts 17210 | . . . . 5 class sSet | |
15 | 4, 13, 14 | co 7448 | . . . 4 class (𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) |
16 | cco 17323 | . . . . . 6 class comp | |
17 | 5, 16 | cfv 6573 | . . . . 5 class (comp‘ndx) |
18 | c0 4352 | . . . . 5 class ∅ | |
19 | 17, 18 | cop 4654 | . . . 4 class 〈(comp‘ndx), ∅〉 |
20 | 15, 19, 14 | co 7448 | . . 3 class ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) |
21 | 2, 3, 20 | cmpt 5249 | . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
22 | 1, 21 | wceq 1537 | 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: prstcval 48731 |
Copyright terms: Public domain | W3C validator |