Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 47770
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 47761.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 47773, prstchom 47784, and prstcthin 47783. Other important properties include prstcbas 47774, prstcleval 47775, prstcle 47777, prstcocval 47778, prstcoc 47780, prstchom2 47785, and prstcprs 47782. Use those instead.

Note that the defining property prstchom 47784 is equivalent to prstchom2 47785 given prstcthin 47783. See thincn0eu 47739 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 47769 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18250 . . 3 class Proset
42cv 1538 . . . . 5 class 𝑘
5 cnx 17130 . . . . . . 7 class ndx
6 chom 17212 . . . . . . 7 class Hom
75, 6cfv 6542 . . . . . 6 class (Hom ‘ndx)
8 cple 17208 . . . . . . . 8 class le
94, 8cfv 6542 . . . . . . 7 class (le‘𝑘)
10 c1o 8461 . . . . . . . 8 class 1o
1110csn 4627 . . . . . . 7 class {1o}
129, 11cxp 5673 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4633 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17100 . . . . 5 class sSet
154, 13, 14co 7411 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17213 . . . . . 6 class comp
175, 16cfv 6542 . . . . 5 class (comp‘ndx)
18 c0 4321 . . . . 5 class
1917, 18cop 4633 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7411 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5230 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1539 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  47771
  Copyright terms: Public domain W3C validator