Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49543
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49457.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49446), by prstcnid 49546, prstchom 49555, and prstcthin 49554. Other important properties include prstcbas 49547, prstcleval 49548, prstcle 49549, prstcocval 49550, prstcoc 49551, prstchom2 49556, and prstcprs 49553. Use those instead.

Note that the defining property prstchom 49555 is equivalent to prstchom2 49556 given prstcthin 49554. See thincn0eu 49424 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49542 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18260 . . 3 class Proset
42cv 1539 . . . . 5 class 𝑘
5 cnx 17170 . . . . . . 7 class ndx
6 chom 17238 . . . . . . 7 class Hom
75, 6cfv 6514 . . . . . 6 class (Hom ‘ndx)
8 cple 17234 . . . . . . . 8 class le
94, 8cfv 6514 . . . . . . 7 class (le‘𝑘)
10 c1o 8430 . . . . . . . 8 class 1o
1110csn 4592 . . . . . . 7 class {1o}
129, 11cxp 5639 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4598 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17140 . . . . 5 class sSet
154, 13, 14co 7390 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17239 . . . . . 6 class comp
175, 16cfv 6514 . . . . 5 class (comp‘ndx)
18 c0 4299 . . . . 5 class
1917, 18cop 4598 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7390 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5191 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1540 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49544
  Copyright terms: Public domain W3C validator