Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49394
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49317.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49306), by prstcnid 49397, prstchom 49406, and prstcthin 49405. Other important properties include prstcbas 49398, prstcleval 49399, prstcle 49400, prstcocval 49401, prstcoc 49402, prstchom2 49407, and prstcprs 49404. Use those instead.

Note that the defining property prstchom 49406 is equivalent to prstchom2 49407 given prstcthin 49405. See thincn0eu 49284 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49393 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18309 . . 3 class Proset
42cv 1539 . . . . 5 class 𝑘
5 cnx 17217 . . . . . . 7 class ndx
6 chom 17287 . . . . . . 7 class Hom
75, 6cfv 6536 . . . . . 6 class (Hom ‘ndx)
8 cple 17283 . . . . . . . 8 class le
94, 8cfv 6536 . . . . . . 7 class (le‘𝑘)
10 c1o 8478 . . . . . . . 8 class 1o
1110csn 4606 . . . . . . 7 class {1o}
129, 11cxp 5657 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4612 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17187 . . . . 5 class sSet
154, 13, 14co 7410 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17288 . . . . . 6 class comp
175, 16cfv 6536 . . . . 5 class (comp‘ndx)
18 c0 4313 . . . . 5 class
1917, 18cop 4612 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7410 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5206 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1540 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49395
  Copyright terms: Public domain W3C validator