Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49375
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49298.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49287), by prstcnid 49378, prstchom 49387, and prstcthin 49386. Other important properties include prstcbas 49379, prstcleval 49380, prstcle 49381, prstcocval 49382, prstcoc 49383, prstchom2 49388, and prstcprs 49385. Use those instead.

Note that the defining property prstchom 49387 is equivalent to prstchom2 49388 given prstcthin 49386. See thincn0eu 49265 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49374 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18302 . . 3 class Proset
42cv 1539 . . . . 5 class 𝑘
5 cnx 17210 . . . . . . 7 class ndx
6 chom 17280 . . . . . . 7 class Hom
75, 6cfv 6530 . . . . . 6 class (Hom ‘ndx)
8 cple 17276 . . . . . . . 8 class le
94, 8cfv 6530 . . . . . . 7 class (le‘𝑘)
10 c1o 8471 . . . . . . . 8 class 1o
1110csn 4601 . . . . . . 7 class {1o}
129, 11cxp 5652 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4607 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17180 . . . . 5 class sSet
154, 13, 14co 7403 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17281 . . . . . 6 class comp
175, 16cfv 6530 . . . . 5 class (comp‘ndx)
18 c0 4308 . . . . 5 class
1917, 18cop 4607 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7403 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5201 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1540 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49376
  Copyright terms: Public domain W3C validator