Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 47772
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 47763.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 47775, prstchom 47786, and prstcthin 47785. Other important properties include prstcbas 47776, prstcleval 47777, prstcle 47779, prstcocval 47780, prstcoc 47782, prstchom2 47787, and prstcprs 47784. Use those instead.

Note that the defining property prstchom 47786 is equivalent to prstchom2 47787 given prstcthin 47785. See thincn0eu 47741 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 47771 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18251 . . 3 class Proset
42cv 1539 . . . . 5 class 𝑘
5 cnx 17131 . . . . . . 7 class ndx
6 chom 17213 . . . . . . 7 class Hom
75, 6cfv 6544 . . . . . 6 class (Hom ‘ndx)
8 cple 17209 . . . . . . . 8 class le
94, 8cfv 6544 . . . . . . 7 class (le‘𝑘)
10 c1o 8462 . . . . . . . 8 class 1o
1110csn 4629 . . . . . . 7 class {1o}
129, 11cxp 5675 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4635 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17101 . . . . 5 class sSet
154, 13, 14co 7412 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17214 . . . . . 6 class comp
175, 16cfv 6544 . . . . 5 class (comp‘ndx)
18 c0 4323 . . . . 5 class
1917, 18cop 4635 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7412 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5232 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1540 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  47773
  Copyright terms: Public domain W3C validator