| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-prstc | Structured version Visualization version GIF version | ||
| Description: Definition of the
function converting a preordered set to a category.
Justified by prsthinc 49298.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49287), by prstcnid 49378, prstchom 49387, and prstcthin 49386. Other important properties include prstcbas 49379, prstcleval 49380, prstcle 49381, prstcocval 49382, prstcoc 49383, prstchom2 49388, and prstcprs 49385. Use those instead. Note that the defining property prstchom 49387 is equivalent to prstchom2 49388 given prstcthin 49386. See thincn0eu 49265 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-prstc | ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cprstc 49374 | . 2 class ProsetToCat | |
| 2 | vk | . . 3 setvar 𝑘 | |
| 3 | cproset 18302 | . . 3 class Proset | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑘 |
| 5 | cnx 17210 | . . . . . . 7 class ndx | |
| 6 | chom 17280 | . . . . . . 7 class Hom | |
| 7 | 5, 6 | cfv 6530 | . . . . . 6 class (Hom ‘ndx) |
| 8 | cple 17276 | . . . . . . . 8 class le | |
| 9 | 4, 8 | cfv 6530 | . . . . . . 7 class (le‘𝑘) |
| 10 | c1o 8471 | . . . . . . . 8 class 1o | |
| 11 | 10 | csn 4601 | . . . . . . 7 class {1o} |
| 12 | 9, 11 | cxp 5652 | . . . . . 6 class ((le‘𝑘) × {1o}) |
| 13 | 7, 12 | cop 4607 | . . . . 5 class 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉 |
| 14 | csts 17180 | . . . . 5 class sSet | |
| 15 | 4, 13, 14 | co 7403 | . . . 4 class (𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) |
| 16 | cco 17281 | . . . . . 6 class comp | |
| 17 | 5, 16 | cfv 6530 | . . . . 5 class (comp‘ndx) |
| 18 | c0 4308 | . . . . 5 class ∅ | |
| 19 | 17, 18 | cop 4607 | . . . 4 class 〈(comp‘ndx), ∅〉 |
| 20 | 15, 19, 14 | co 7403 | . . 3 class ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) |
| 21 | 2, 3, 20 | cmpt 5201 | . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 22 | 1, 21 | wceq 1540 | 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: prstcval 49376 |
| Copyright terms: Public domain | W3C validator |