Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49539
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49453.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49442), by prstcnid 49542, prstchom 49551, and prstcthin 49550. Other important properties include prstcbas 49543, prstcleval 49544, prstcle 49545, prstcocval 49546, prstcoc 49547, prstchom2 49552, and prstcprs 49549. Use those instead.

Note that the defining property prstchom 49551 is equivalent to prstchom2 49552 given prstcthin 49550. See thincn0eu 49420 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49538 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18253 . . 3 class Proset
42cv 1539 . . . . 5 class 𝑘
5 cnx 17163 . . . . . . 7 class ndx
6 chom 17231 . . . . . . 7 class Hom
75, 6cfv 6511 . . . . . 6 class (Hom ‘ndx)
8 cple 17227 . . . . . . . 8 class le
94, 8cfv 6511 . . . . . . 7 class (le‘𝑘)
10 c1o 8427 . . . . . . . 8 class 1o
1110csn 4589 . . . . . . 7 class {1o}
129, 11cxp 5636 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4595 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17133 . . . . 5 class sSet
154, 13, 14co 7387 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17232 . . . . . 6 class comp
175, 16cfv 6511 . . . . 5 class (comp‘ndx)
18 c0 4296 . . . . 5 class
1917, 18cop 4595 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7387 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5188 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1540 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49540
  Copyright terms: Public domain W3C validator