Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 48730
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 48721.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 48733, prstchom 48744, and prstcthin 48743. Other important properties include prstcbas 48734, prstcleval 48735, prstcle 48737, prstcocval 48738, prstcoc 48740, prstchom2 48745, and prstcprs 48742. Use those instead.

Note that the defining property prstchom 48744 is equivalent to prstchom2 48745 given prstcthin 48743. See thincn0eu 48699 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 48729 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18363 . . 3 class Proset
42cv 1536 . . . . 5 class 𝑘
5 cnx 17240 . . . . . . 7 class ndx
6 chom 17322 . . . . . . 7 class Hom
75, 6cfv 6573 . . . . . 6 class (Hom ‘ndx)
8 cple 17318 . . . . . . . 8 class le
94, 8cfv 6573 . . . . . . 7 class (le‘𝑘)
10 c1o 8515 . . . . . . . 8 class 1o
1110csn 4648 . . . . . . 7 class {1o}
129, 11cxp 5698 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4654 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17210 . . . . 5 class sSet
154, 13, 14co 7448 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17323 . . . . . 6 class comp
175, 16cfv 6573 . . . . 5 class (comp‘ndx)
18 c0 4352 . . . . 5 class
1917, 18cop 4654 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7448 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5249 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1537 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  48731
  Copyright terms: Public domain W3C validator