Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49711
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49625.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49614), by prstcnid 49714, prstchom 49723, and prstcthin 49722. Other important properties include prstcbas 49715, prstcleval 49716, prstcle 49717, prstcocval 49718, prstcoc 49719, prstchom2 49724, and prstcprs 49721. Use those instead.

Note that the defining property prstchom 49723 is equivalent to prstchom2 49724 given prstcthin 49722. See thincn0eu 49592 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49710 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18206 . . 3 class Proset
42cv 1540 . . . . 5 class 𝑘
5 cnx 17111 . . . . . . 7 class ndx
6 chom 17179 . . . . . . 7 class Hom
75, 6cfv 6489 . . . . . 6 class (Hom ‘ndx)
8 cple 17175 . . . . . . . 8 class le
94, 8cfv 6489 . . . . . . 7 class (le‘𝑘)
10 c1o 8387 . . . . . . . 8 class 1o
1110csn 4577 . . . . . . 7 class {1o}
129, 11cxp 5619 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4583 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17081 . . . . 5 class sSet
154, 13, 14co 7355 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17180 . . . . . 6 class comp
175, 16cfv 6489 . . . . 5 class (comp‘ndx)
18 c0 4282 . . . . 5 class
1917, 18cop 4583 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7355 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5176 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1541 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49712
  Copyright terms: Public domain W3C validator