Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 46232
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 46223.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 46235, prstchom 46244, and prstcthin 46243. Other important properties include prstcbas 46236, prstcleval 46237, prstcle 46238, prstcocval 46239, prstcoc 46240, prstchom2 46245, and prstcprs 46242. Use those instead.

Note that the defining property prstchom 46244 is equivalent to prstchom2 46245 given prstcthin 46243. See thincn0eu 46201 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 46231 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 17926 . . 3 class Proset
42cv 1538 . . . . 5 class 𝑘
5 cnx 16822 . . . . . . 7 class ndx
6 chom 16899 . . . . . . 7 class Hom
75, 6cfv 6418 . . . . . 6 class (Hom ‘ndx)
8 cple 16895 . . . . . . . 8 class le
94, 8cfv 6418 . . . . . . 7 class (le‘𝑘)
10 c1o 8260 . . . . . . . 8 class 1o
1110csn 4558 . . . . . . 7 class {1o}
129, 11cxp 5578 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4564 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 16792 . . . . 5 class sSet
154, 13, 14co 7255 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 16900 . . . . . 6 class comp
175, 16cfv 6418 . . . . 5 class (comp‘ndx)
18 c0 4253 . . . . 5 class
1917, 18cop 4564 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7255 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5153 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1539 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  46233
  Copyright terms: Public domain W3C validator