Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prstc Structured version   Visualization version   GIF version

Definition df-prstc 49582
Description: Definition of the function converting a preordered set to a category. Justified by prsthinc 49496.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism (thincciso 49485), by prstcnid 49585, prstchom 49594, and prstcthin 49593. Other important properties include prstcbas 49586, prstcleval 49587, prstcle 49588, prstcocval 49589, prstcoc 49590, prstchom2 49595, and prstcprs 49592. Use those instead.

Note that the defining property prstchom 49594 is equivalent to prstchom2 49595 given prstcthin 49593. See thincn0eu 49463 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-prstc ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Detailed syntax breakdown of Definition df-prstc
StepHypRef Expression
1 cprstc 49581 . 2 class ProsetToCat
2 vk . . 3 setvar 𝑘
3 cproset 18193 . . 3 class Proset
42cv 1540 . . . . 5 class 𝑘
5 cnx 17099 . . . . . . 7 class ndx
6 chom 17167 . . . . . . 7 class Hom
75, 6cfv 6476 . . . . . 6 class (Hom ‘ndx)
8 cple 17163 . . . . . . . 8 class le
94, 8cfv 6476 . . . . . . 7 class (le‘𝑘)
10 c1o 8373 . . . . . . . 8 class 1o
1110csn 4571 . . . . . . 7 class {1o}
129, 11cxp 5609 . . . . . 6 class ((le‘𝑘) × {1o})
137, 12cop 4577 . . . . 5 class ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩
14 csts 17069 . . . . 5 class sSet
154, 13, 14co 7341 . . . 4 class (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩)
16 cco 17168 . . . . . 6 class comp
175, 16cfv 6476 . . . . 5 class (comp‘ndx)
18 c0 4278 . . . . 5 class
1917, 18cop 4577 . . . 4 class ⟨(comp‘ndx), ∅⟩
2015, 19, 14co 7341 . . 3 class ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)
212, 3, 20cmpt 5167 . 2 class (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
221, 21wceq 1541 1 wff ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
This definition is referenced by:  prstcval  49583
  Copyright terms: Public domain W3C validator