| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincn0eu | Structured version Visualization version GIF version | ||
| Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincn0eu.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| thincn0eu.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| Ref | Expression |
|---|---|
| thincn0eu | ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . . . . . 6 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ ((𝑋𝐻𝑌) ≠ ∅ → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 3 | thincmo.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 4 | thincmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | thincmo.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | thincn0eu.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 7 | thincn0eu.h | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 8 | 3, 4, 5, 6, 7 | thincmod 49591 | . . . . 5 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 9 | 2, 8 | anim12i 613 | . . . 4 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| 10 | df-eu 2566 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 12 | 11 | expcom 413 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| 13 | euex 2574 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 14 | 13, 1 | sylibr 234 | . 2 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅) |
| 15 | 12, 14 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃*wmo 2535 ∃!weu 2565 ≠ wne 2929 ∅c0 4282 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 ThinCatcthinc 49578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-thinc 49579 |
| This theorem is referenced by: fullthinc 49611 prstchom2 49724 |
| Copyright terms: Public domain | W3C validator |