Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincn0eu Structured version   Visualization version   GIF version

Theorem thincn0eu 46201
Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincn0eu (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincn0eu
StepHypRef Expression
1 n0 4277 . . . . . 6 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
21biimpi 215 . . . . 5 ((𝑋𝐻𝑌) ≠ ∅ → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
3 thincmo.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
4 thincmo.x . . . . . 6 (𝜑𝑋𝐵)
5 thincmo.y . . . . . 6 (𝜑𝑌𝐵)
6 thincn0eu.b . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
7 thincn0eu.h . . . . . 6 (𝜑𝐻 = (Hom ‘𝐶))
83, 4, 5, 6, 7thincmod 46200 . . . . 5 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
92, 8anim12i 612 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
10 df-eu 2569 . . . 4 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
119, 10sylibr 233 . . 3 (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1211expcom 413 . 2 (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
13 euex 2577 . . 3 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1413, 1sylibr 233 . 2 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅)
1512, 14impbid1 224 1 (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wne 2942  c0 4253  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-thinc 46189
This theorem is referenced by:  fullthinc  46215  prstchom2  46245
  Copyright terms: Public domain W3C validator