Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincn0eu | Structured version Visualization version GIF version |
Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincn0eu.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
thincn0eu.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
thincn0eu | ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4245 | . . . . . 6 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
2 | 1 | biimpi 219 | . . . . 5 ⊢ ((𝑋𝐻𝑌) ≠ ∅ → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
3 | thincmo.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
4 | thincmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | thincmo.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | thincn0eu.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
7 | thincn0eu.h | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
8 | 3, 4, 5, 6, 7 | thincmod 45835 | . . . . 5 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
9 | 2, 8 | anim12i 616 | . . . 4 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
10 | df-eu 2571 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | |
11 | 9, 10 | sylibr 237 | . . 3 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
12 | 11 | expcom 417 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
13 | euex 2579 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
14 | 13, 1 | sylibr 237 | . 2 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅) |
15 | 12, 14 | impbid1 228 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∃*wmo 2539 ∃!weu 2570 ≠ wne 2935 ∅c0 4221 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 Hom chom 16691 ThinCatcthinc 45826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-ov 7185 df-thinc 45827 |
This theorem is referenced by: prstchom2 45863 |
Copyright terms: Public domain | W3C validator |