Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincn0eu Structured version   Visualization version   GIF version

Theorem thincn0eu 45929
Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincn0eu (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincn0eu
StepHypRef Expression
1 n0 4247 . . . . . 6 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
21biimpi 219 . . . . 5 ((𝑋𝐻𝑌) ≠ ∅ → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
3 thincmo.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
4 thincmo.x . . . . . 6 (𝜑𝑋𝐵)
5 thincmo.y . . . . . 6 (𝜑𝑌𝐵)
6 thincn0eu.b . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
7 thincn0eu.h . . . . . 6 (𝜑𝐻 = (Hom ‘𝐶))
83, 4, 5, 6, 7thincmod 45928 . . . . 5 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
92, 8anim12i 616 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
10 df-eu 2568 . . . 4 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
119, 10sylibr 237 . . 3 (((𝑋𝐻𝑌) ≠ ∅ ∧ 𝜑) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1211expcom 417 . 2 (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
13 euex 2576 . . 3 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1413, 1sylibr 237 . 2 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅)
1512, 14impbid1 228 1 (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  ∃*wmo 2537  ∃!weu 2567  wne 2932  c0 4223  cfv 6358  (class class class)co 7191  Basecbs 16666  Hom chom 16760  ThinCatcthinc 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-thinc 45917
This theorem is referenced by:  fullthinc  45943  prstchom2  45973
  Copyright terms: Public domain W3C validator