Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcval Structured version   Visualization version   GIF version

Theorem prstcval 48990
Description: Lemma for prstcnidlem 48991 and prstcthin 49002. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
Assertion
Ref Expression
prstcval (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Proof of Theorem prstcval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prstcnid.c . 2 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
3 id 22 . . . . . 6 (𝑘 = 𝐾𝑘 = 𝐾)
4 fveq2 6914 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
54xpeq1d 5722 . . . . . . 7 (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o}))
65opeq2d 4888 . . . . . 6 (𝑘 = 𝐾 → ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩ = ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)
73, 6oveq12d 7456 . . . . 5 (𝑘 = 𝐾 → (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) = (𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))
87oveq1d 7453 . . . 4 (𝑘 = 𝐾 → ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
9 df-prstc 48989 . . . 4 ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
10 ovex 7471 . . . 4 ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) ∈ V
118, 9, 10fvmpt 7023 . . 3 (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
122, 11syl 17 . 2 (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
131, 12eqtrd 2777 1 (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  c0 4342  {csn 4634  cop 4640   × cxp 5691  cfv 6569  (class class class)co 7438  1oc1o 8507   sSet csts 17206  ndxcnx 17236  lecple 17314  Hom chom 17318  compcco 17319   Proset cproset 18359  ProsetToCatcprstc 48988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-prstc 48989
This theorem is referenced by:  prstcnidlem  48991  prstcthin  49002
  Copyright terms: Public domain W3C validator