| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcval | Structured version Visualization version GIF version | ||
| Description: Lemma for prstcnidlem 49584 and prstcthin 49593. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| Ref | Expression |
|---|---|
| prstcval | ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | . 2 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 2 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) | |
| 4 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
| 5 | 4 | xpeq1d 5640 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o})) |
| 6 | 5 | opeq2d 4827 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉 = 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) |
| 7 | 3, 6 | oveq12d 7359 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) = (𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
| 8 | 7 | oveq1d 7356 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 9 | df-prstc 49582 | . . . 4 ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | |
| 10 | ovex 7374 | . . . 4 ⊢ ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6924 | . . 3 ⊢ (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 13 | 1, 12 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4278 {csn 4571 〈cop 4577 × cxp 5609 ‘cfv 6476 (class class class)co 7341 1oc1o 8373 sSet csts 17069 ndxcnx 17099 lecple 17163 Hom chom 17167 compcco 17168 Proset cproset 18193 ProsetToCatcprstc 49581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-prstc 49582 |
| This theorem is referenced by: prstcnidlem 49584 prstcthin 49593 |
| Copyright terms: Public domain | W3C validator |