![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcval | Structured version Visualization version GIF version |
Description: Lemma for prstcnidlem 47772 and prstcthin 47783. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
Ref | Expression |
---|---|
prstcval | ⊢ (𝜑 → 𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.c | . 2 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | id 22 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) | |
4 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
5 | 4 | xpeq1d 5704 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o})) |
6 | 5 | opeq2d 4879 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩ = ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) |
7 | 3, 6 | oveq12d 7429 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) = (𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)) |
8 | 7 | oveq1d 7426 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) |
9 | df-prstc 47770 | . . . 4 ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) | |
10 | ovex 7444 | . . . 4 ⊢ ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) ∈ V | |
11 | 8, 9, 10 | fvmpt 6997 | . . 3 ⊢ (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) |
13 | 1, 12 | eqtrd 2770 | 1 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∅c0 4321 {csn 4627 ⟨cop 4633 × cxp 5673 ‘cfv 6542 (class class class)co 7411 1oc1o 8461 sSet csts 17100 ndxcnx 17130 lecple 17208 Hom chom 17212 compcco 17213 Proset cproset 18250 ProsetToCatcprstc 47769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-prstc 47770 |
This theorem is referenced by: prstcnidlem 47772 prstcthin 47783 |
Copyright terms: Public domain | W3C validator |