Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcval Structured version   Visualization version   GIF version

Theorem prstcval 49540
Description: Lemma for prstcnidlem 49541 and prstcthin 49550. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
Assertion
Ref Expression
prstcval (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Proof of Theorem prstcval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prstcnid.c . 2 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
3 id 22 . . . . . 6 (𝑘 = 𝐾𝑘 = 𝐾)
4 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
54xpeq1d 5652 . . . . . . 7 (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o}))
65opeq2d 4834 . . . . . 6 (𝑘 = 𝐾 → ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩ = ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)
73, 6oveq12d 7371 . . . . 5 (𝑘 = 𝐾 → (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) = (𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))
87oveq1d 7368 . . . 4 (𝑘 = 𝐾 → ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
9 df-prstc 49539 . . . 4 ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
10 ovex 7386 . . . 4 ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) ∈ V
118, 9, 10fvmpt 6934 . . 3 (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
122, 11syl 17 . 2 (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
131, 12eqtrd 2764 1 (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286  {csn 4579  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  1oc1o 8388   sSet csts 17092  ndxcnx 17122  lecple 17186  Hom chom 17190  compcco 17191   Proset cproset 18216  ProsetToCatcprstc 49538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-prstc 49539
This theorem is referenced by:  prstcnidlem  49541  prstcthin  49550
  Copyright terms: Public domain W3C validator