Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcval Structured version   Visualization version   GIF version

Theorem prstcval 49712
Description: Lemma for prstcnidlem 49713 and prstcthin 49722. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
Assertion
Ref Expression
prstcval (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))

Proof of Theorem prstcval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prstcnid.c . 2 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
3 id 22 . . . . . 6 (𝑘 = 𝐾𝑘 = 𝐾)
4 fveq2 6831 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
54xpeq1d 5650 . . . . . . 7 (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o}))
65opeq2d 4833 . . . . . 6 (𝑘 = 𝐾 → ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩ = ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)
73, 6oveq12d 7373 . . . . 5 (𝑘 = 𝐾 → (𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) = (𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))
87oveq1d 7370 . . . 4 (𝑘 = 𝐾 → ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
9 df-prstc 49711 . . . 4 ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
10 ovex 7388 . . . 4 ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩) ∈ V
118, 9, 10fvmpt 6938 . . 3 (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
122, 11syl 17 . 2 (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
131, 12eqtrd 2768 1 (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  c0 4282  {csn 4577  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1oc1o 8387   sSet csts 17081  ndxcnx 17111  lecple 17175  Hom chom 17179  compcco 17180   Proset cproset 18206  ProsetToCatcprstc 49710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-prstc 49711
This theorem is referenced by:  prstcnidlem  49713  prstcthin  49722
  Copyright terms: Public domain W3C validator