| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcval | Structured version Visualization version GIF version | ||
| Description: Lemma for prstcnidlem 49430 and prstcthin 49439. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| Ref | Expression |
|---|---|
| prstcval | ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | . 2 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 2 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) | |
| 4 | fveq2 6865 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
| 5 | 4 | xpeq1d 5675 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o})) |
| 6 | 5 | opeq2d 4852 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉 = 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) |
| 7 | 3, 6 | oveq12d 7412 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) = (𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
| 8 | 7 | oveq1d 7409 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 9 | df-prstc 49428 | . . . 4 ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | |
| 10 | ovex 7427 | . . . 4 ⊢ ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6975 | . . 3 ⊢ (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 13 | 1, 12 | eqtrd 2765 | 1 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4304 {csn 4597 〈cop 4603 × cxp 5644 ‘cfv 6519 (class class class)co 7394 1oc1o 8436 sSet csts 17139 ndxcnx 17169 lecple 17233 Hom chom 17237 compcco 17238 Proset cproset 18259 ProsetToCatcprstc 49427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-prstc 49428 |
| This theorem is referenced by: prstcnidlem 49430 prstcthin 49439 |
| Copyright terms: Public domain | W3C validator |