| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcval | Structured version Visualization version GIF version | ||
| Description: Lemma for prstcnidlem 49131 and prstcthin 49142. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| Ref | Expression |
|---|---|
| prstcval | ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | . 2 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 2 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) | |
| 4 | fveq2 6885 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
| 5 | 4 | xpeq1d 5694 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ((le‘𝑘) × {1o}) = ((le‘𝐾) × {1o})) |
| 6 | 5 | opeq2d 4860 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉 = 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) |
| 7 | 3, 6 | oveq12d 7430 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) = (𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
| 8 | 7 | oveq1d 7427 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 9 | df-prstc 49129 | . . . 4 ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | |
| 10 | ovex 7445 | . . . 4 ⊢ ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6995 | . . 3 ⊢ (𝐾 ∈ Proset → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝜑 → (ProsetToCat‘𝐾) = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 13 | 1, 12 | eqtrd 2769 | 1 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4313 {csn 4606 〈cop 4612 × cxp 5663 ‘cfv 6540 (class class class)co 7412 1oc1o 8480 sSet csts 17181 ndxcnx 17211 lecple 17279 Hom chom 17283 compcco 17284 Proset cproset 18307 ProsetToCatcprstc 49128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-prstc 49129 |
| This theorem is referenced by: prstcnidlem 49131 prstcthin 49142 |
| Copyright terms: Public domain | W3C validator |