Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsthinc Structured version   Visualization version   GIF version

Theorem prsthinc 45951
Description: Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 45908 and catprs2 45909 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
prsthinc.h (𝜑 → ( × {1o}) = (Hom ‘𝐶))
prsthinc.o (𝜑 → ∅ = (comp‘𝐶))
prsthinc.l (𝜑 = (le‘𝐶))
prsthinc.p (𝜑𝐶 ∈ Proset )
Assertion
Ref Expression
prsthinc (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦

Proof of Theorem prsthinc
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 prsthinc.h . 2 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
3 eqidd 2737 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( × {1o}) = ( × {1o}))
43f1omo 45804 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
5 df-ov 7194 . . . . 5 (𝑥( × {1o})𝑦) = (( × {1o})‘⟨𝑥, 𝑦⟩)
65eleq2i 2822 . . . 4 (𝑓 ∈ (𝑥( × {1o})𝑦) ↔ 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
76mobii 2547 . . 3 (∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦) ↔ ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
84, 7sylibr 237 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦))
9 prsthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
10 prsthinc.p . 2 (𝜑𝐶 ∈ Proset )
11 biid 264 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))))
12 0lt1o 8209 . . 3 ∅ ∈ 1o
131eleq2d 2816 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐶)))
14 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2736 . . . . . . . 8 (le‘𝐶) = (le‘𝐶)
1614, 15prsref 17760 . . . . . . 7 ((𝐶 ∈ Proset ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1710, 16sylan 583 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1813, 17sylbida 595 . . . . 5 ((𝜑𝑦𝐵) → 𝑦(le‘𝐶)𝑦)
19 prsthinc.l . . . . . . 7 (𝜑 = (le‘𝐶))
2019breqd 5050 . . . . . 6 (𝜑 → (𝑦 𝑦𝑦(le‘𝐶)𝑦))
2120biimpar 481 . . . . 5 ((𝜑𝑦(le‘𝐶)𝑦) → 𝑦 𝑦)
2218, 21syldan 594 . . . 4 ((𝜑𝑦𝐵) → 𝑦 𝑦)
23 eqidd 2737 . . . . 5 ((𝜑𝑦𝐵) → ( × {1o}) = ( × {1o}))
24 1oex 8193 . . . . . 6 1o ∈ V
2524a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ∈ V)
26 1n0 8199 . . . . . 6 1o ≠ ∅
2726a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ≠ ∅)
2823, 25, 27fvconstr 45799 . . . 4 ((𝜑𝑦𝐵) → (𝑦 𝑦 ↔ (𝑦( × {1o})𝑦) = 1o))
2922, 28mpbid 235 . . 3 ((𝜑𝑦𝐵) → (𝑦( × {1o})𝑦) = 1o)
3012, 29eleqtrrid 2838 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦( × {1o})𝑦))
31 0ov 7228 . . . . . 6 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
3231oveqi 7204 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
33 0ov 7228 . . . . 5 (𝑔𝑓) = ∅
3432, 33eqtri 2759 . . . 4 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
3534, 12eqeltri 2827 . . 3 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ 1o
36 simpl 486 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝜑)
3710adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝐶 ∈ Proset )
381eleq2d 2816 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
391eleq2d 2816 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝐶)))
4038, 13, 393anbi123d 1438 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))))
4140biimpa 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
4241adantrr 717 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
43 eqidd 2737 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → ( × {1o}) = ( × {1o}))
44 simprrl 781 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑓 ∈ (𝑥( × {1o})𝑦))
4543, 44fvconstr2 45801 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑦)
4619breqd 5050 . . . . . . . 8 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4746biimpd 232 . . . . . . 7 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4836, 45, 47sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑦)
49 simprrr 782 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑔 ∈ (𝑦( × {1o})𝑧))
5043, 49fvconstr2 45801 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦 𝑧)
5119breqd 5050 . . . . . . . 8 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5251biimpd 232 . . . . . . 7 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5336, 50, 52sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦(le‘𝐶)𝑧)
5414, 15prstr 17761 . . . . . 6 ((𝐶 ∈ Proset ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑧)) → 𝑥(le‘𝐶)𝑧)
5537, 42, 48, 53, 54syl112anc 1376 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑧)
5619breqd 5050 . . . . . 6 (𝜑 → (𝑥 𝑧𝑥(le‘𝐶)𝑧))
5756biimprd 251 . . . . 5 (𝜑 → (𝑥(le‘𝐶)𝑧𝑥 𝑧))
5836, 55, 57sylc 65 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑧)
5924a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ∈ V)
6026a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ≠ ∅)
6143, 59, 60fvconstr 45799 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 𝑧 ↔ (𝑥( × {1o})𝑧) = 1o))
6258, 61mpbid 235 . . 3 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥( × {1o})𝑧) = 1o)
6335, 62eleqtrrid 2838 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥( × {1o})𝑧))
641, 2, 8, 9, 10, 11, 30, 63isthincd2 45935 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  ∃*wmo 2537  wne 2932  Vcvv 3398  c0 4223  {csn 4527  cop 4533   class class class wbr 5039  cmpt 5120   × cxp 5534  cfv 6358  (class class class)co 7191  1oc1o 8173  Basecbs 16666  lecple 16756  Hom chom 16760  compcco 16761  Idccid 17122   Proset cproset 17754  ThinCatcthinc 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-1o 8180  df-cat 17125  df-cid 17126  df-proset 17756  df-thinc 45917
This theorem is referenced by:  prstcthin  45971
  Copyright terms: Public domain W3C validator