Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsthinc Structured version   Visualization version   GIF version

Theorem prsthinc 49575
Description: Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 49122 and catprs2 49123 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
prsthinc.h (𝜑 → ( × {1o}) = (Hom ‘𝐶))
prsthinc.o (𝜑 → ∅ = (comp‘𝐶))
prsthinc.l (𝜑 = (le‘𝐶))
prsthinc.p (𝜑𝐶 ∈ Proset )
Assertion
Ref Expression
prsthinc (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦

Proof of Theorem prsthinc
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 prsthinc.h . 2 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
3 eqidd 2732 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( × {1o}) = ( × {1o}))
43f1omo 49003 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
5 df-ov 7349 . . . . 5 (𝑥( × {1o})𝑦) = (( × {1o})‘⟨𝑥, 𝑦⟩)
65eleq2i 2823 . . . 4 (𝑓 ∈ (𝑥( × {1o})𝑦) ↔ 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
76mobii 2543 . . 3 (∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦) ↔ ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
84, 7sylibr 234 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦))
9 prsthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
10 prsthinc.p . 2 (𝜑𝐶 ∈ Proset )
11 biid 261 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))))
12 0lt1o 8419 . . 3 ∅ ∈ 1o
131eleq2d 2817 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐶)))
14 eqid 2731 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2731 . . . . . . . 8 (le‘𝐶) = (le‘𝐶)
1614, 15prsref 18204 . . . . . . 7 ((𝐶 ∈ Proset ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1710, 16sylan 580 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1813, 17sylbida 592 . . . . 5 ((𝜑𝑦𝐵) → 𝑦(le‘𝐶)𝑦)
19 prsthinc.l . . . . . . 7 (𝜑 = (le‘𝐶))
2019breqd 5100 . . . . . 6 (𝜑 → (𝑦 𝑦𝑦(le‘𝐶)𝑦))
2120biimpar 477 . . . . 5 ((𝜑𝑦(le‘𝐶)𝑦) → 𝑦 𝑦)
2218, 21syldan 591 . . . 4 ((𝜑𝑦𝐵) → 𝑦 𝑦)
23 eqidd 2732 . . . . 5 ((𝜑𝑦𝐵) → ( × {1o}) = ( × {1o}))
24 1oex 8395 . . . . . 6 1o ∈ V
2524a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ∈ V)
26 1n0 8403 . . . . . 6 1o ≠ ∅
2726a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ≠ ∅)
2823, 25, 27fvconstr 48972 . . . 4 ((𝜑𝑦𝐵) → (𝑦 𝑦 ↔ (𝑦( × {1o})𝑦) = 1o))
2922, 28mpbid 232 . . 3 ((𝜑𝑦𝐵) → (𝑦( × {1o})𝑦) = 1o)
3012, 29eleqtrrid 2838 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦( × {1o})𝑦))
31 0ov 7383 . . . . . 6 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
3231oveqi 7359 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
33 0ov 7383 . . . . 5 (𝑔𝑓) = ∅
3432, 33eqtri 2754 . . . 4 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
3534, 12eqeltri 2827 . . 3 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ 1o
36 simpl 482 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝜑)
3710adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝐶 ∈ Proset )
381eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
391eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝐶)))
4038, 13, 393anbi123d 1438 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))))
4140biimpa 476 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
4241adantrr 717 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
43 eqidd 2732 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → ( × {1o}) = ( × {1o}))
44 simprrl 780 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑓 ∈ (𝑥( × {1o})𝑦))
4543, 44fvconstr2 48974 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑦)
4619breqd 5100 . . . . . . . 8 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4746biimpd 229 . . . . . . 7 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4836, 45, 47sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑦)
49 simprrr 781 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑔 ∈ (𝑦( × {1o})𝑧))
5043, 49fvconstr2 48974 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦 𝑧)
5119breqd 5100 . . . . . . . 8 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5251biimpd 229 . . . . . . 7 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5336, 50, 52sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦(le‘𝐶)𝑧)
5414, 15prstr 18205 . . . . . 6 ((𝐶 ∈ Proset ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑧)) → 𝑥(le‘𝐶)𝑧)
5537, 42, 48, 53, 54syl112anc 1376 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑧)
5619breqd 5100 . . . . . 6 (𝜑 → (𝑥 𝑧𝑥(le‘𝐶)𝑧))
5756biimprd 248 . . . . 5 (𝜑 → (𝑥(le‘𝐶)𝑧𝑥 𝑧))
5836, 55, 57sylc 65 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑧)
5924a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ∈ V)
6026a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ≠ ∅)
6143, 59, 60fvconstr 48972 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 𝑧 ↔ (𝑥( × {1o})𝑧) = 1o))
6258, 61mpbid 232 . . 3 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥( × {1o})𝑧) = 1o)
6335, 62eleqtrrid 2838 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥( × {1o})𝑧))
641, 2, 8, 9, 10, 11, 30, 63isthincd2 49548 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ∃*wmo 2533  wne 2928  Vcvv 3436  c0 4280  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  1oc1o 8378  Basecbs 17120  lecple 17168  Hom chom 17172  compcco 17173  Idccid 17571   Proset cproset 18198  ThinCatcthinc 49528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1o 8385  df-cat 17574  df-cid 17575  df-proset 18200  df-thinc 49529
This theorem is referenced by:  prstcthin  49672
  Copyright terms: Public domain W3C validator