Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsthinc Structured version   Visualization version   GIF version

Theorem prsthinc 49453
Description: Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 49000 and catprs2 49001 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
prsthinc.h (𝜑 → ( × {1o}) = (Hom ‘𝐶))
prsthinc.o (𝜑 → ∅ = (comp‘𝐶))
prsthinc.l (𝜑 = (le‘𝐶))
prsthinc.p (𝜑𝐶 ∈ Proset )
Assertion
Ref Expression
prsthinc (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦

Proof of Theorem prsthinc
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 prsthinc.h . 2 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
3 eqidd 2730 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( × {1o}) = ( × {1o}))
43f1omo 48881 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
5 df-ov 7352 . . . . 5 (𝑥( × {1o})𝑦) = (( × {1o})‘⟨𝑥, 𝑦⟩)
65eleq2i 2820 . . . 4 (𝑓 ∈ (𝑥( × {1o})𝑦) ↔ 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
76mobii 2541 . . 3 (∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦) ↔ ∃*𝑓 𝑓 ∈ (( × {1o})‘⟨𝑥, 𝑦⟩))
84, 7sylibr 234 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥( × {1o})𝑦))
9 prsthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
10 prsthinc.p . 2 (𝜑𝐶 ∈ Proset )
11 biid 261 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧))))
12 0lt1o 8422 . . 3 ∅ ∈ 1o
131eleq2d 2814 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐶)))
14 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2729 . . . . . . . 8 (le‘𝐶) = (le‘𝐶)
1614, 15prsref 18204 . . . . . . 7 ((𝐶 ∈ Proset ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1710, 16sylan 580 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐶)) → 𝑦(le‘𝐶)𝑦)
1813, 17sylbida 592 . . . . 5 ((𝜑𝑦𝐵) → 𝑦(le‘𝐶)𝑦)
19 prsthinc.l . . . . . . 7 (𝜑 = (le‘𝐶))
2019breqd 5103 . . . . . 6 (𝜑 → (𝑦 𝑦𝑦(le‘𝐶)𝑦))
2120biimpar 477 . . . . 5 ((𝜑𝑦(le‘𝐶)𝑦) → 𝑦 𝑦)
2218, 21syldan 591 . . . 4 ((𝜑𝑦𝐵) → 𝑦 𝑦)
23 eqidd 2730 . . . . 5 ((𝜑𝑦𝐵) → ( × {1o}) = ( × {1o}))
24 1oex 8398 . . . . . 6 1o ∈ V
2524a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ∈ V)
26 1n0 8406 . . . . . 6 1o ≠ ∅
2726a1i 11 . . . . 5 ((𝜑𝑦𝐵) → 1o ≠ ∅)
2823, 25, 27fvconstr 48850 . . . 4 ((𝜑𝑦𝐵) → (𝑦 𝑦 ↔ (𝑦( × {1o})𝑦) = 1o))
2922, 28mpbid 232 . . 3 ((𝜑𝑦𝐵) → (𝑦( × {1o})𝑦) = 1o)
3012, 29eleqtrrid 2835 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦( × {1o})𝑦))
31 0ov 7386 . . . . . 6 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
3231oveqi 7362 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
33 0ov 7386 . . . . 5 (𝑔𝑓) = ∅
3432, 33eqtri 2752 . . . 4 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
3534, 12eqeltri 2824 . . 3 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ 1o
36 simpl 482 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝜑)
3710adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝐶 ∈ Proset )
381eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
391eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝐶)))
4038, 13, 393anbi123d 1438 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))))
4140biimpa 476 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
4241adantrr 717 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)))
43 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → ( × {1o}) = ( × {1o}))
44 simprrl 780 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑓 ∈ (𝑥( × {1o})𝑦))
4543, 44fvconstr2 48852 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑦)
4619breqd 5103 . . . . . . . 8 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4746biimpd 229 . . . . . . 7 (𝜑 → (𝑥 𝑦𝑥(le‘𝐶)𝑦))
4836, 45, 47sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑦)
49 simprrr 781 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑔 ∈ (𝑦( × {1o})𝑧))
5043, 49fvconstr2 48852 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦 𝑧)
5119breqd 5103 . . . . . . . 8 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5251biimpd 229 . . . . . . 7 (𝜑 → (𝑦 𝑧𝑦(le‘𝐶)𝑧))
5336, 50, 52sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑦(le‘𝐶)𝑧)
5414, 15prstr 18205 . . . . . 6 ((𝐶 ∈ Proset ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑧)) → 𝑥(le‘𝐶)𝑧)
5537, 42, 48, 53, 54syl112anc 1376 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥(le‘𝐶)𝑧)
5619breqd 5103 . . . . . 6 (𝜑 → (𝑥 𝑧𝑥(le‘𝐶)𝑧))
5756biimprd 248 . . . . 5 (𝜑 → (𝑥(le‘𝐶)𝑧𝑥 𝑧))
5836, 55, 57sylc 65 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 𝑥 𝑧)
5924a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ∈ V)
6026a1i 11 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → 1o ≠ ∅)
6143, 59, 60fvconstr 48850 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥 𝑧 ↔ (𝑥( × {1o})𝑧) = 1o))
6258, 61mpbid 232 . . 3 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑥( × {1o})𝑧) = 1o)
6335, 62eleqtrrid 2835 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥( × {1o})𝑦) ∧ 𝑔 ∈ (𝑦( × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥( × {1o})𝑧))
641, 2, 8, 9, 10, 11, 30, 63isthincd2 49426 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  Vcvv 3436  c0 4284  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  1oc1o 8381  Basecbs 17120  lecple 17168  Hom chom 17172  compcco 17173  Idccid 17571   Proset cproset 18198  ThinCatcthinc 49406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-1o 8388  df-cat 17574  df-cid 17575  df-proset 18200  df-thinc 49407
This theorem is referenced by:  prstcthin  49550
  Copyright terms: Public domain W3C validator