Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsthinc Structured version   Visualization version   GIF version

Theorem prsthinc 47627
Description: Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 47584 and catprs2 47585 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΆ))
prsthinc.h (πœ‘ β†’ ( ≀ Γ— {1o}) = (Hom β€˜πΆ))
prsthinc.o (πœ‘ β†’ βˆ… = (compβ€˜πΆ))
prsthinc.l (πœ‘ β†’ ≀ = (leβ€˜πΆ))
prsthinc.p (πœ‘ β†’ 𝐢 ∈ Proset )
Assertion
Ref Expression
prsthinc (πœ‘ β†’ (𝐢 ∈ ThinCat ∧ (Idβ€˜πΆ) = (𝑦 ∈ 𝐡 ↦ βˆ…)))
Distinct variable groups:   𝑦, ≀   𝑦,𝐡   𝑦,𝐢   πœ‘,𝑦

Proof of Theorem prsthinc
Dummy variables 𝑓 𝑔 π‘₯ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΆ))
2 prsthinc.h . 2 (πœ‘ β†’ ( ≀ Γ— {1o}) = (Hom β€˜πΆ))
3 eqidd 2733 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ( ≀ Γ— {1o}) = ( ≀ Γ— {1o}))
43f1omo 47480 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒ*𝑓 𝑓 ∈ (( ≀ Γ— {1o})β€˜βŸ¨π‘₯, π‘¦βŸ©))
5 df-ov 7408 . . . . 5 (π‘₯( ≀ Γ— {1o})𝑦) = (( ≀ Γ— {1o})β€˜βŸ¨π‘₯, π‘¦βŸ©)
65eleq2i 2825 . . . 4 (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ↔ 𝑓 ∈ (( ≀ Γ— {1o})β€˜βŸ¨π‘₯, π‘¦βŸ©))
76mobii 2542 . . 3 (βˆƒ*𝑓 𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ↔ βˆƒ*𝑓 𝑓 ∈ (( ≀ Γ— {1o})β€˜βŸ¨π‘₯, π‘¦βŸ©))
84, 7sylibr 233 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒ*𝑓 𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦))
9 prsthinc.o . 2 (πœ‘ β†’ βˆ… = (compβ€˜πΆ))
10 prsthinc.p . 2 (πœ‘ β†’ 𝐢 ∈ Proset )
11 biid 260 . 2 (((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧))) ↔ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧))))
12 0lt1o 8500 . . 3 βˆ… ∈ 1o
131eleq2d 2819 . . . . . 6 (πœ‘ β†’ (𝑦 ∈ 𝐡 ↔ 𝑦 ∈ (Baseβ€˜πΆ)))
14 eqid 2732 . . . . . . . 8 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
15 eqid 2732 . . . . . . . 8 (leβ€˜πΆ) = (leβ€˜πΆ)
1614, 15prsref 18248 . . . . . . 7 ((𝐢 ∈ Proset ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ 𝑦(leβ€˜πΆ)𝑦)
1710, 16sylan 580 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ 𝑦(leβ€˜πΆ)𝑦)
1813, 17sylbida 592 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ 𝑦(leβ€˜πΆ)𝑦)
19 prsthinc.l . . . . . . 7 (πœ‘ β†’ ≀ = (leβ€˜πΆ))
2019breqd 5158 . . . . . 6 (πœ‘ β†’ (𝑦 ≀ 𝑦 ↔ 𝑦(leβ€˜πΆ)𝑦))
2120biimpar 478 . . . . 5 ((πœ‘ ∧ 𝑦(leβ€˜πΆ)𝑦) β†’ 𝑦 ≀ 𝑦)
2218, 21syldan 591 . . . 4 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ≀ 𝑦)
23 eqidd 2733 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ ( ≀ Γ— {1o}) = ( ≀ Γ— {1o}))
24 1oex 8472 . . . . . 6 1o ∈ V
2524a1i 11 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ 1o ∈ V)
26 1n0 8484 . . . . . 6 1o β‰  βˆ…
2726a1i 11 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ 1o β‰  βˆ…)
2823, 25, 27fvconstr 47475 . . . 4 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ (𝑦 ≀ 𝑦 ↔ (𝑦( ≀ Γ— {1o})𝑦) = 1o))
2922, 28mpbid 231 . . 3 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ (𝑦( ≀ Γ— {1o})𝑦) = 1o)
3012, 29eleqtrrid 2840 . 2 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ βˆ… ∈ (𝑦( ≀ Γ— {1o})𝑦))
31 0ov 7442 . . . . . 6 (⟨π‘₯, π‘¦βŸ©βˆ…π‘§) = βˆ…
3231oveqi 7418 . . . . 5 (𝑔(⟨π‘₯, π‘¦βŸ©βˆ…π‘§)𝑓) = (π‘”βˆ…π‘“)
33 0ov 7442 . . . . 5 (π‘”βˆ…π‘“) = βˆ…
3432, 33eqtri 2760 . . . 4 (𝑔(⟨π‘₯, π‘¦βŸ©βˆ…π‘§)𝑓) = βˆ…
3534, 12eqeltri 2829 . . 3 (𝑔(⟨π‘₯, π‘¦βŸ©βˆ…π‘§)𝑓) ∈ 1o
36 simpl 483 . . . . 5 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ πœ‘)
3710adantr 481 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 𝐢 ∈ Proset )
381eleq2d 2819 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↔ π‘₯ ∈ (Baseβ€˜πΆ)))
391eleq2d 2819 . . . . . . . . 9 (πœ‘ β†’ (𝑧 ∈ 𝐡 ↔ 𝑧 ∈ (Baseβ€˜πΆ)))
4038, 13, 393anbi123d 1436 . . . . . . . 8 (πœ‘ β†’ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ↔ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ) ∧ 𝑧 ∈ (Baseβ€˜πΆ))))
4140biimpa 477 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ) ∧ 𝑧 ∈ (Baseβ€˜πΆ)))
4241adantrr 715 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ) ∧ 𝑧 ∈ (Baseβ€˜πΆ)))
43 eqidd 2733 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ ( ≀ Γ— {1o}) = ( ≀ Γ— {1o}))
44 simprrl 779 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦))
4543, 44fvconstr2 47477 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ π‘₯ ≀ 𝑦)
4619breqd 5158 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ≀ 𝑦 ↔ π‘₯(leβ€˜πΆ)𝑦))
4746biimpd 228 . . . . . . 7 (πœ‘ β†’ (π‘₯ ≀ 𝑦 β†’ π‘₯(leβ€˜πΆ)𝑦))
4836, 45, 47sylc 65 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ π‘₯(leβ€˜πΆ)𝑦)
49 simprrr 780 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧))
5043, 49fvconstr2 47477 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 𝑦 ≀ 𝑧)
5119breqd 5158 . . . . . . . 8 (πœ‘ β†’ (𝑦 ≀ 𝑧 ↔ 𝑦(leβ€˜πΆ)𝑧))
5251biimpd 228 . . . . . . 7 (πœ‘ β†’ (𝑦 ≀ 𝑧 β†’ 𝑦(leβ€˜πΆ)𝑧))
5336, 50, 52sylc 65 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 𝑦(leβ€˜πΆ)𝑧)
5414, 15prstr 18249 . . . . . 6 ((𝐢 ∈ Proset ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ) ∧ 𝑧 ∈ (Baseβ€˜πΆ)) ∧ (π‘₯(leβ€˜πΆ)𝑦 ∧ 𝑦(leβ€˜πΆ)𝑧)) β†’ π‘₯(leβ€˜πΆ)𝑧)
5537, 42, 48, 53, 54syl112anc 1374 . . . . 5 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ π‘₯(leβ€˜πΆ)𝑧)
5619breqd 5158 . . . . . 6 (πœ‘ β†’ (π‘₯ ≀ 𝑧 ↔ π‘₯(leβ€˜πΆ)𝑧))
5756biimprd 247 . . . . 5 (πœ‘ β†’ (π‘₯(leβ€˜πΆ)𝑧 β†’ π‘₯ ≀ 𝑧))
5836, 55, 57sylc 65 . . . 4 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ π‘₯ ≀ 𝑧)
5924a1i 11 . . . . 5 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 1o ∈ V)
6026a1i 11 . . . . 5 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ 1o β‰  βˆ…)
6143, 59, 60fvconstr 47475 . . . 4 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ (π‘₯ ≀ 𝑧 ↔ (π‘₯( ≀ Γ— {1o})𝑧) = 1o))
6258, 61mpbid 231 . . 3 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ (π‘₯( ≀ Γ— {1o})𝑧) = 1o)
6335, 62eleqtrrid 2840 . 2 ((πœ‘ ∧ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ (𝑓 ∈ (π‘₯( ≀ Γ— {1o})𝑦) ∧ 𝑔 ∈ (𝑦( ≀ Γ— {1o})𝑧)))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©βˆ…π‘§)𝑓) ∈ (π‘₯( ≀ Γ— {1o})𝑧))
641, 2, 8, 9, 10, 11, 30, 63isthincd2 47611 1 (πœ‘ β†’ (𝐢 ∈ ThinCat ∧ (Idβ€˜πΆ) = (𝑦 ∈ 𝐡 ↦ βˆ…)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒ*wmo 2532   β‰  wne 2940  Vcvv 3474  βˆ…c0 4321  {csn 4627  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405  1oc1o 8455  Basecbs 17140  lecple 17200  Hom chom 17204  compcco 17205  Idccid 17605   Proset cproset 18242  ThinCatcthinc 47592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-1o 8462  df-cat 17608  df-cid 17609  df-proset 18244  df-thinc 47593
This theorem is referenced by:  prstcthin  47649
  Copyright terms: Public domain W3C validator