Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcocval | Structured version Visualization version GIF version |
Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcoc.oc | ⊢ (𝜑 → ⊥ = (oc‘𝐾)) |
Ref | Expression |
---|---|
prstcocval | ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcoc.oc | . 2 ⊢ (𝜑 → ⊥ = (oc‘𝐾)) | |
2 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
3 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
4 | ocid 16789 | . . 3 ⊢ oc = Slot (oc‘ndx) | |
5 | 1nn0 12004 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 5, 5 | deccl 12206 | . . . . . 6 ⊢ ;11 ∈ ℕ0 |
7 | 6 | nn0rei 11999 | . . . . 5 ⊢ ;11 ∈ ℝ |
8 | 5nn 11814 | . . . . . 6 ⊢ 5 ∈ ℕ | |
9 | 1lt5 11908 | . . . . . 6 ⊢ 1 < 5 | |
10 | 5, 5, 8, 9 | declt 12219 | . . . . 5 ⊢ ;11 < ;15 |
11 | 7, 10 | ltneii 10843 | . . . 4 ⊢ ;11 ≠ ;15 |
12 | ocndx 16788 | . . . . 5 ⊢ (oc‘ndx) = ;11 | |
13 | ccondx 16804 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
14 | 12, 13 | neeq12i 3001 | . . . 4 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ↔ ;11 ≠ ;15) |
15 | 11, 14 | mpbir 234 | . . 3 ⊢ (oc‘ndx) ≠ (comp‘ndx) |
16 | 4nn 11811 | . . . . . 6 ⊢ 4 ∈ ℕ | |
17 | 1lt4 11904 | . . . . . 6 ⊢ 1 < 4 | |
18 | 5, 5, 16, 17 | declt 12219 | . . . . 5 ⊢ ;11 < ;14 |
19 | 7, 18 | ltneii 10843 | . . . 4 ⊢ ;11 ≠ ;14 |
20 | homndx 16802 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
21 | 12, 20 | neeq12i 3001 | . . . 4 ⊢ ((oc‘ndx) ≠ (Hom ‘ndx) ↔ ;11 ≠ ;14) |
22 | 19, 21 | mpbir 234 | . . 3 ⊢ (oc‘ndx) ≠ (Hom ‘ndx) |
23 | 2, 3, 4, 15, 22 | prstcnid 45853 | . 2 ⊢ (𝜑 → (oc‘𝐾) = (oc‘𝐶)) |
24 | 1, 23 | eqtrd 2774 | 1 ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ‘cfv 6349 1c1 10628 4c4 11785 5c5 11786 ;cdc 12191 ndxcnx 16595 occoc 16688 Hom chom 16691 compcco 16692 Proset cproset 17664 ProsetToCatcprstc 45849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-dec 12192 df-ndx 16601 df-slot 16602 df-sets 16605 df-ocomp 16701 df-hom 16704 df-cco 16705 df-prstc 45850 |
This theorem is referenced by: prstcoc 45858 |
Copyright terms: Public domain | W3C validator |