Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcocval Structured version   Visualization version   GIF version

Theorem prstcocval 48792
Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstcoc.oc (𝜑 = (oc‘𝐾))
Assertion
Ref Expression
prstcocval (𝜑 = (oc‘𝐶))

Proof of Theorem prstcocval
StepHypRef Expression
1 prstcoc.oc . 2 (𝜑 = (oc‘𝐾))
2 prstcnid.c . . 3 (𝜑𝐶 = (ProsetToCat‘𝐾))
3 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
4 ocid 17417 . . 3 oc = Slot (oc‘ndx)
5 slotsdifocndx 17453 . . . 4 ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx))
65simpli 483 . . 3 (oc‘ndx) ≠ (comp‘ndx)
75simpri 485 . . 3 (oc‘ndx) ≠ (Hom ‘ndx)
82, 3, 4, 6, 7prstcnid 48787 . 2 (𝜑 → (oc‘𝐾) = (oc‘𝐶))
91, 8eqtrd 2773 1 (𝜑 = (oc‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  wcel 2104  wne 2936  cfv 6558  ndxcnx 17216  occoc 17295  Hom chom 17298  compcco 17299   Proset cproset 18339  ProsetToCatcprstc 48783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-om 7881  df-2nd 8008  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-dec 12725  df-sets 17187  df-slot 17205  df-ndx 17217  df-ocomp 17308  df-hom 17311  df-cco 17312  df-prstc 48784
This theorem is referenced by:  prstcoc  48794
  Copyright terms: Public domain W3C validator