| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnid | Structured version Visualization version GIF version | ||
| Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
| prstcnid.nh | ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) |
| Ref | Expression |
|---|---|
| prstcnid | ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | prstcnid.nh | . . 3 ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . 2 ⊢ (𝐸‘𝐾) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
| 4 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 5 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
| 7 | 4, 5, 1, 6 | prstcnidlem 49663 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
| 8 | 3, 7 | eqtr4id 2785 | 1 ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4573 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 lecple 17168 Hom chom 17172 compcco 17173 Proset cproset 18198 ProsetToCatcprstc 49660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 df-slot 17093 df-prstc 49661 |
| This theorem is referenced by: prstcbas 49665 prstcleval 49666 prstcocval 49668 |
| Copyright terms: Public domain | W3C validator |