| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnid | Structured version Visualization version GIF version | ||
| Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
| prstcnid.nh | ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) |
| Ref | Expression |
|---|---|
| prstcnid | ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | prstcnid.nh | . . 3 ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) | |
| 3 | 1, 2 | setsnid 17228 | . 2 ⊢ (𝐸‘𝐾) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
| 4 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 5 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
| 7 | 4, 5, 1, 6 | prstcnidlem 49242 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
| 8 | 3, 7 | eqtr4id 2788 | 1 ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {csn 4606 〈cop 4612 × cxp 5663 ‘cfv 6541 (class class class)co 7413 1oc1o 8481 sSet csts 17183 Slot cslot 17201 ndxcnx 17213 lecple 17281 Hom chom 17285 compcco 17286 Proset cproset 18309 ProsetToCatcprstc 49239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-sets 17184 df-slot 17202 df-prstc 49240 |
| This theorem is referenced by: prstcbas 49244 prstcleval 49245 prstclevalOLD 49246 prstcocval 49248 prstcocvalOLD 49249 |
| Copyright terms: Public domain | W3C validator |