Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcnid Structured version   Visualization version   GIF version

Theorem prstcnid 49243
Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstcnid.e 𝐸 = Slot (𝐸‘ndx)
prstcnid.no (𝐸‘ndx) ≠ (comp‘ndx)
prstcnid.nh (𝐸‘ndx) ≠ (Hom ‘ndx)
Assertion
Ref Expression
prstcnid (𝜑 → (𝐸𝐾) = (𝐸𝐶))

Proof of Theorem prstcnid
StepHypRef Expression
1 prstcnid.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 prstcnid.nh . . 3 (𝐸‘ndx) ≠ (Hom ‘ndx)
31, 2setsnid 17228 . 2 (𝐸𝐾) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))
4 prstcnid.c . . 3 (𝜑𝐶 = (ProsetToCat‘𝐾))
5 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
6 prstcnid.no . . 3 (𝐸‘ndx) ≠ (comp‘ndx)
74, 5, 1, 6prstcnidlem 49242 . 2 (𝜑 → (𝐸𝐶) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)))
83, 7eqtr4id 2788 1 (𝜑 → (𝐸𝐾) = (𝐸𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  {csn 4606  cop 4612   × cxp 5663  cfv 6541  (class class class)co 7413  1oc1o 8481   sSet csts 17183  Slot cslot 17201  ndxcnx 17213  lecple 17281  Hom chom 17285  compcco 17286   Proset cproset 18309  ProsetToCatcprstc 49239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-sets 17184  df-slot 17202  df-prstc 49240
This theorem is referenced by:  prstcbas  49244  prstcleval  49245  prstclevalOLD  49246  prstcocval  49248  prstcocvalOLD  49249
  Copyright terms: Public domain W3C validator