![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnid | Structured version Visualization version GIF version |
Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
prstcnid.nh | ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) |
Ref | Expression |
---|---|
prstcnid | ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | prstcnid.nh | . . 3 ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) | |
3 | 1, 2 | setsnid 17256 | . 2 ⊢ (𝐸‘𝐾) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
4 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
5 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
7 | 4, 5, 1, 6 | prstcnidlem 48732 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
8 | 3, 7 | eqtr4id 2799 | 1 ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {csn 4648 〈cop 4654 × cxp 5698 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 lecple 17318 Hom chom 17322 compcco 17323 Proset cproset 18363 ProsetToCatcprstc 48729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 df-prstc 48730 |
This theorem is referenced by: prstcbas 48734 prstcleval 48735 prstclevalOLD 48736 prstcocval 48738 prstcocvalOLD 48739 |
Copyright terms: Public domain | W3C validator |