Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcnid Structured version   Visualization version   GIF version

Theorem prstcnid 48733
Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstcnid.e 𝐸 = Slot (𝐸‘ndx)
prstcnid.no (𝐸‘ndx) ≠ (comp‘ndx)
prstcnid.nh (𝐸‘ndx) ≠ (Hom ‘ndx)
Assertion
Ref Expression
prstcnid (𝜑 → (𝐸𝐾) = (𝐸𝐶))

Proof of Theorem prstcnid
StepHypRef Expression
1 prstcnid.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 prstcnid.nh . . 3 (𝐸‘ndx) ≠ (Hom ‘ndx)
31, 2setsnid 17256 . 2 (𝐸𝐾) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩))
4 prstcnid.c . . 3 (𝜑𝐶 = (ProsetToCat‘𝐾))
5 prstcnid.k . . 3 (𝜑𝐾 ∈ Proset )
6 prstcnid.no . . 3 (𝐸‘ndx) ≠ (comp‘ndx)
74, 5, 1, 6prstcnidlem 48732 . 2 (𝜑 → (𝐸𝐶) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)))
83, 7eqtr4id 2799 1 (𝜑 → (𝐸𝐾) = (𝐸𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  {csn 4648  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  1oc1o 8515   sSet csts 17210  Slot cslot 17228  ndxcnx 17240  lecple 17318  Hom chom 17322  compcco 17323   Proset cproset 18363  ProsetToCatcprstc 48729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sets 17211  df-slot 17229  df-prstc 48730
This theorem is referenced by:  prstcbas  48734  prstcleval  48735  prstclevalOLD  48736  prstcocval  48738  prstcocvalOLD  48739
  Copyright terms: Public domain W3C validator