| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rank | Structured version Visualization version GIF version | ||
| Description: Define the rank function. See rankval 9709, rankval2 9711, rankval3 9733, or rankval4 9760 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function 𝑅1: given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of [TakeutiZaring] p. 79. Theorem rankid 9726 illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a 9729. (Contributed by NM, 11-Oct-2003.) |
| Ref | Expression |
|---|---|
| df-rank | ⊢ rank = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crnk 9656 | . 2 class rank | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 5 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 6 | 5 | cv 1540 | . . . . . . . 8 class 𝑦 |
| 7 | 6 | csuc 6308 | . . . . . . 7 class suc 𝑦 |
| 8 | cr1 9655 | . . . . . . 7 class 𝑅1 | |
| 9 | 7, 8 | cfv 6481 | . . . . . 6 class (𝑅1‘suc 𝑦) |
| 10 | 4, 9 | wcel 2111 | . . . . 5 wff 𝑥 ∈ (𝑅1‘suc 𝑦) |
| 11 | con0 6306 | . . . . 5 class On | |
| 12 | 10, 5, 11 | crab 3395 | . . . 4 class {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} |
| 13 | 12 | cint 4895 | . . 3 class ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} |
| 14 | 2, 3, 13 | cmpt 5170 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) |
| 15 | 1, 14 | wceq 1541 | 1 wff rank = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rankf 9687 rankvalb 9690 |
| Copyright terms: Public domain | W3C validator |