MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rank Structured version   Visualization version   GIF version

Definition df-rank 9523
Description: Define the rank function. See rankval 9574, rankval2 9576, rankval3 9598, or rankval4 9625 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function 𝑅1: given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of [TakeutiZaring] p. 79. Theorem rankid 9591 illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a 9594. (Contributed by NM, 11-Oct-2003.)
Assertion
Ref Expression
df-rank rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-rank
StepHypRef Expression
1 crnk 9521 . 2 class rank
2 vx . . 3 setvar 𝑥
3 cvv 3432 . . 3 class V
42cv 1538 . . . . . 6 class 𝑥
5 vy . . . . . . . . 9 setvar 𝑦
65cv 1538 . . . . . . . 8 class 𝑦
76csuc 6268 . . . . . . 7 class suc 𝑦
8 cr1 9520 . . . . . . 7 class 𝑅1
97, 8cfv 6433 . . . . . 6 class (𝑅1‘suc 𝑦)
104, 9wcel 2106 . . . . 5 wff 𝑥 ∈ (𝑅1‘suc 𝑦)
11 con0 6266 . . . . 5 class On
1210, 5, 11crab 3068 . . . 4 class {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1312cint 4879 . . 3 class {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
142, 3, 13cmpt 5157 . 2 class (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
151, 14wceq 1539 1 wff rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  rankf  9552  rankvalb  9555
  Copyright terms: Public domain W3C validator