MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   GIF version

Theorem rankval4 9866
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankval4 (rankβ€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
Distinct variable group:   π‘₯,𝐴

Proof of Theorem rankval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2902 . . . . . 6 β„²π‘₯𝐴
2 nfcv 2902 . . . . . . 7 β„²π‘₯𝑅1
3 nfiu1 5031 . . . . . . 7 β„²π‘₯βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
42, 3nffv 6901 . . . . . 6 β„²π‘₯(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))
51, 4dfss2f 3972 . . . . 5 (𝐴 βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 β†’ π‘₯ ∈ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))))
6 vex 3477 . . . . . . 7 π‘₯ ∈ V
76rankid 9832 . . . . . 6 π‘₯ ∈ (𝑅1β€˜suc (rankβ€˜π‘₯))
8 ssiun2 5050 . . . . . . . 8 (π‘₯ ∈ 𝐴 β†’ suc (rankβ€˜π‘₯) βŠ† βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))
9 rankon 9794 . . . . . . . . . 10 (rankβ€˜π‘₯) ∈ On
109onsuci 7831 . . . . . . . . 9 suc (rankβ€˜π‘₯) ∈ On
11 rankr1b.1 . . . . . . . . . 10 𝐴 ∈ V
1210rgenw 3064 . . . . . . . . . 10 βˆ€π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On
13 iunon 8343 . . . . . . . . . 10 ((𝐴 ∈ V ∧ βˆ€π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On) β†’ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On)
1411, 12, 13mp2an 689 . . . . . . . . 9 βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On
15 r1ord3 9781 . . . . . . . . 9 ((suc (rankβ€˜π‘₯) ∈ On ∧ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On) β†’ (suc (rankβ€˜π‘₯) βŠ† βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) β†’ (𝑅1β€˜suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))))
1610, 14, 15mp2an 689 . . . . . . . 8 (suc (rankβ€˜π‘₯) βŠ† βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) β†’ (𝑅1β€˜suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)))
178, 16syl 17 . . . . . . 7 (π‘₯ ∈ 𝐴 β†’ (𝑅1β€˜suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)))
1817sseld 3981 . . . . . 6 (π‘₯ ∈ 𝐴 β†’ (π‘₯ ∈ (𝑅1β€˜suc (rankβ€˜π‘₯)) β†’ π‘₯ ∈ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))))
197, 18mpi 20 . . . . 5 (π‘₯ ∈ 𝐴 β†’ π‘₯ ∈ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)))
205, 19mpgbir 1800 . . . 4 𝐴 βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))
21 fvex 6904 . . . . 5 (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) ∈ V
2221rankss 9848 . . . 4 (𝐴 βŠ† (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) β†’ (rankβ€˜π΄) βŠ† (rankβ€˜(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))))
2320, 22ax-mp 5 . . 3 (rankβ€˜π΄) βŠ† (rankβ€˜(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)))
24 r1ord3 9781 . . . . . . 7 ((βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On ∧ 𝑦 ∈ On) β†’ (βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦 β†’ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)))
2514, 24mpan 687 . . . . . 6 (𝑦 ∈ On β†’ (βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦 β†’ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)))
2625ss2rabi 4074 . . . . 5 {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦} βŠ† {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)}
27 intss 4973 . . . . 5 ({𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦} βŠ† {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)} β†’ ∩ {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)} βŠ† ∩ {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦})
2826, 27ax-mp 5 . . . 4 ∩ {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)} βŠ† ∩ {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦}
29 rankval2 9817 . . . . 5 ((𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) ∈ V β†’ (rankβ€˜(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))) = ∩ {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)})
3021, 29ax-mp 5 . . . 4 (rankβ€˜(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))) = ∩ {𝑦 ∈ On ∣ (𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)) βŠ† (𝑅1β€˜π‘¦)}
31 intmin 4972 . . . . . 6 (βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) ∈ On β†’ ∩ {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦} = βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))
3214, 31ax-mp 5 . . . . 5 ∩ {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦} = βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
3332eqcomi 2740 . . . 4 βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) = ∩ {𝑦 ∈ On ∣ βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† 𝑦}
3428, 30, 333sstr4i 4025 . . 3 (rankβ€˜(𝑅1β€˜βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯))) βŠ† βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
3523, 34sstri 3991 . 2 (rankβ€˜π΄) βŠ† βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
36 iunss 5048 . . 3 (βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† (rankβ€˜π΄) ↔ βˆ€π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† (rankβ€˜π΄))
3711rankel 9838 . . . 4 (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΄))
38 rankon 9794 . . . . 5 (rankβ€˜π΄) ∈ On
399, 38onsucssi 7834 . . . 4 ((rankβ€˜π‘₯) ∈ (rankβ€˜π΄) ↔ suc (rankβ€˜π‘₯) βŠ† (rankβ€˜π΄))
4037, 39sylib 217 . . 3 (π‘₯ ∈ 𝐴 β†’ suc (rankβ€˜π‘₯) βŠ† (rankβ€˜π΄))
4136, 40mprgbir 3067 . 2 βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯) βŠ† (rankβ€˜π΄)
4235, 41eqssi 3998 1 (rankβ€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 suc (rankβ€˜π‘₯)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431  Vcvv 3473   βŠ† wss 3948  βˆ© cint 4950  βˆͺ ciun 4997  Oncon0 6364  suc csuc 6366  β€˜cfv 6543  π‘…1cr1 9761  rankcrnk 9762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9591  ax-inf2 9640
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-r1 9763  df-rank 9764
This theorem is referenced by:  rankbnd  9867  rankc1  9869  scottrankd  43310
  Copyright terms: Public domain W3C validator