MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   GIF version

Theorem rankval4 9820
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankval4 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . 6 𝑥𝐴
2 nfcv 2891 . . . . . . 7 𝑥𝑅1
3 nfiu1 4991 . . . . . . 7 𝑥 𝑥𝐴 suc (rank‘𝑥)
42, 3nffv 6868 . . . . . 6 𝑥(𝑅1 𝑥𝐴 suc (rank‘𝑥))
51, 4dfssf 3937 . . . . 5 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
6 vex 3451 . . . . . . 7 𝑥 ∈ V
76rankid 9786 . . . . . 6 𝑥 ∈ (𝑅1‘suc (rank‘𝑥))
8 ssiun2 5011 . . . . . . . 8 (𝑥𝐴 → suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥))
9 rankon 9748 . . . . . . . . . 10 (rank‘𝑥) ∈ On
109onsuci 7814 . . . . . . . . 9 suc (rank‘𝑥) ∈ On
11 rankr1b.1 . . . . . . . . . 10 𝐴 ∈ V
1210rgenw 3048 . . . . . . . . . 10 𝑥𝐴 suc (rank‘𝑥) ∈ On
13 iunon 8308 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ∀𝑥𝐴 suc (rank‘𝑥) ∈ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
1411, 12, 13mp2an 692 . . . . . . . . 9 𝑥𝐴 suc (rank‘𝑥) ∈ On
15 r1ord3 9735 . . . . . . . . 9 ((suc (rank‘𝑥) ∈ On ∧ 𝑥𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
1610, 14, 15mp2an 692 . . . . . . . 8 (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
178, 16syl 17 . . . . . . 7 (𝑥𝐴 → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
1817sseld 3945 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ (𝑅1‘suc (rank‘𝑥)) → 𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
197, 18mpi 20 . . . . 5 (𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
205, 19mpgbir 1799 . . . 4 𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))
21 fvex 6871 . . . . 5 (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V
2221rankss 9802 . . . 4 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))))
2320, 22ax-mp 5 . . 3 (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥)))
24 r1ord3 9735 . . . . . . 7 (( 𝑥𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2514, 24mpan 690 . . . . . 6 (𝑦 ∈ On → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2625ss2rabi 4040 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
27 intss 4933 . . . . 5 ({𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
2826, 27ax-mp 5 . . . 4 {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
29 rankval2 9771 . . . . 5 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
3021, 29ax-mp 5 . . . 4 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
31 intmin 4932 . . . . . 6 ( 𝑥𝐴 suc (rank‘𝑥) ∈ On → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
3214, 31ax-mp 5 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥)
3332eqcomi 2738 . . . 4 𝑥𝐴 suc (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
3428, 30, 333sstr4i 3998 . . 3 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) ⊆ 𝑥𝐴 suc (rank‘𝑥)
3523, 34sstri 3956 . 2 (rank‘𝐴) ⊆ 𝑥𝐴 suc (rank‘𝑥)
36 iunss 5009 . . 3 ( 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
3711rankel 9792 . . . 4 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
38 rankon 9748 . . . . 5 (rank‘𝐴) ∈ On
399, 38onsucssi 7817 . . . 4 ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘𝐴))
4037, 39sylib 218 . . 3 (𝑥𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴))
4136, 40mprgbir 3051 . 2 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)
4235, 41eqssi 3963 1 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914   cint 4910   ciun 4955  Oncon0 6332  suc csuc 6334  cfv 6511  𝑅1cr1 9715  rankcrnk 9716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718
This theorem is referenced by:  rankbnd  9821  rankc1  9823  scottrankd  44237
  Copyright terms: Public domain W3C validator