MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   GIF version

Theorem rankval4 9556
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankval4 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . . . 6 𝑥𝐴
2 nfcv 2906 . . . . . . 7 𝑥𝑅1
3 nfiu1 4955 . . . . . . 7 𝑥 𝑥𝐴 suc (rank‘𝑥)
42, 3nffv 6766 . . . . . 6 𝑥(𝑅1 𝑥𝐴 suc (rank‘𝑥))
51, 4dfss2f 3907 . . . . 5 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
6 vex 3426 . . . . . . 7 𝑥 ∈ V
76rankid 9522 . . . . . 6 𝑥 ∈ (𝑅1‘suc (rank‘𝑥))
8 ssiun2 4973 . . . . . . . 8 (𝑥𝐴 → suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥))
9 rankon 9484 . . . . . . . . . 10 (rank‘𝑥) ∈ On
109onsuci 7660 . . . . . . . . 9 suc (rank‘𝑥) ∈ On
11 rankr1b.1 . . . . . . . . . 10 𝐴 ∈ V
1210rgenw 3075 . . . . . . . . . 10 𝑥𝐴 suc (rank‘𝑥) ∈ On
13 iunon 8141 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ∀𝑥𝐴 suc (rank‘𝑥) ∈ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
1411, 12, 13mp2an 688 . . . . . . . . 9 𝑥𝐴 suc (rank‘𝑥) ∈ On
15 r1ord3 9471 . . . . . . . . 9 ((suc (rank‘𝑥) ∈ On ∧ 𝑥𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
1610, 14, 15mp2an 688 . . . . . . . 8 (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
178, 16syl 17 . . . . . . 7 (𝑥𝐴 → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
1817sseld 3916 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ (𝑅1‘suc (rank‘𝑥)) → 𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
197, 18mpi 20 . . . . 5 (𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
205, 19mpgbir 1803 . . . 4 𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))
21 fvex 6769 . . . . 5 (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V
2221rankss 9538 . . . 4 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))))
2320, 22ax-mp 5 . . 3 (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥)))
24 r1ord3 9471 . . . . . . 7 (( 𝑥𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2514, 24mpan 686 . . . . . 6 (𝑦 ∈ On → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2625ss2rabi 4006 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
27 intss 4897 . . . . 5 ({𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
2826, 27ax-mp 5 . . . 4 {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
29 rankval2 9507 . . . . 5 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
3021, 29ax-mp 5 . . . 4 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
31 intmin 4896 . . . . . 6 ( 𝑥𝐴 suc (rank‘𝑥) ∈ On → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
3214, 31ax-mp 5 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥)
3332eqcomi 2747 . . . 4 𝑥𝐴 suc (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
3428, 30, 333sstr4i 3960 . . 3 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) ⊆ 𝑥𝐴 suc (rank‘𝑥)
3523, 34sstri 3926 . 2 (rank‘𝐴) ⊆ 𝑥𝐴 suc (rank‘𝑥)
36 iunss 4971 . . 3 ( 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
3711rankel 9528 . . . 4 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
38 rankon 9484 . . . . 5 (rank‘𝐴) ∈ On
399, 38onsucssi 7663 . . . 4 ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘𝐴))
4037, 39sylib 217 . . 3 (𝑥𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴))
4136, 40mprgbir 3078 . 2 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)
4235, 41eqssi 3933 1 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   cint 4876   ciun 4921  Oncon0 6251  suc csuc 6253  cfv 6418  𝑅1cr1 9451  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  rankbnd  9557  rankc1  9559  scottrankd  41755
  Copyright terms: Public domain W3C validator