Step | Hyp | Ref
| Expression |
1 | | nfcv 2902 |
. . . . . 6
β’
β²π₯π΄ |
2 | | nfcv 2902 |
. . . . . . 7
β’
β²π₯π
1 |
3 | | nfiu1 5031 |
. . . . . . 7
β’
β²π₯βͺ π₯ β π΄ suc (rankβπ₯) |
4 | 2, 3 | nffv 6901 |
. . . . . 6
β’
β²π₯(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) |
5 | 1, 4 | dfss2f 3972 |
. . . . 5
β’ (π΄ β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β βπ₯(π₯ β π΄ β π₯ β (π
1ββͺ π₯ β π΄ suc (rankβπ₯)))) |
6 | | vex 3477 |
. . . . . . 7
β’ π₯ β V |
7 | 6 | rankid 9832 |
. . . . . 6
β’ π₯ β
(π
1βsuc (rankβπ₯)) |
8 | | ssiun2 5050 |
. . . . . . . 8
β’ (π₯ β π΄ β suc (rankβπ₯) β βͺ
π₯ β π΄ suc (rankβπ₯)) |
9 | | rankon 9794 |
. . . . . . . . . 10
β’
(rankβπ₯)
β On |
10 | 9 | onsuci 7831 |
. . . . . . . . 9
β’ suc
(rankβπ₯) β
On |
11 | | rankr1b.1 |
. . . . . . . . . 10
β’ π΄ β V |
12 | 10 | rgenw 3064 |
. . . . . . . . . 10
β’
βπ₯ β
π΄ suc (rankβπ₯) β On |
13 | | iunon 8343 |
. . . . . . . . . 10
β’ ((π΄ β V β§ βπ₯ β π΄ suc (rankβπ₯) β On) β βͺ π₯ β π΄ suc (rankβπ₯) β On) |
14 | 11, 12, 13 | mp2an 689 |
. . . . . . . . 9
β’ βͺ π₯ β π΄ suc (rankβπ₯) β On |
15 | | r1ord3 9781 |
. . . . . . . . 9
β’ ((suc
(rankβπ₯) β On
β§ βͺ π₯ β π΄ suc (rankβπ₯) β On) β (suc (rankβπ₯) β βͺ π₯ β π΄ suc (rankβπ₯) β (π
1βsuc
(rankβπ₯)) β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)))) |
16 | 10, 14, 15 | mp2an 689 |
. . . . . . . 8
β’ (suc
(rankβπ₯) β
βͺ π₯ β π΄ suc (rankβπ₯) β (π
1βsuc
(rankβπ₯)) β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯))) |
17 | 8, 16 | syl 17 |
. . . . . . 7
β’ (π₯ β π΄ β (π
1βsuc
(rankβπ₯)) β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯))) |
18 | 17 | sseld 3981 |
. . . . . 6
β’ (π₯ β π΄ β (π₯ β (π
1βsuc
(rankβπ₯)) β
π₯ β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)))) |
19 | 7, 18 | mpi 20 |
. . . . 5
β’ (π₯ β π΄ β π₯ β (π
1ββͺ π₯ β π΄ suc (rankβπ₯))) |
20 | 5, 19 | mpgbir 1800 |
. . . 4
β’ π΄ β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) |
21 | | fvex 6904 |
. . . . 5
β’
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β V |
22 | 21 | rankss 9848 |
. . . 4
β’ (π΄ β
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (rankβπ΄) β
(rankβ(π
1ββͺ
π₯ β π΄ suc (rankβπ₯)))) |
23 | 20, 22 | ax-mp 5 |
. . 3
β’
(rankβπ΄)
β (rankβ(π
1ββͺ π₯ β π΄ suc (rankβπ₯))) |
24 | | r1ord3 9781 |
. . . . . . 7
β’
((βͺ π₯ β π΄ suc (rankβπ₯) β On β§ π¦ β On) β (βͺ π₯ β π΄ suc (rankβπ₯) β π¦ β (π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦))) |
25 | 14, 24 | mpan 687 |
. . . . . 6
β’ (π¦ β On β (βͺ π₯ β π΄ suc (rankβπ₯) β π¦ β (π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦))) |
26 | 25 | ss2rabi 4074 |
. . . . 5
β’ {π¦ β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} β {π¦ β On β£
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)} |
27 | | intss 4973 |
. . . . 5
β’ ({π¦ β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} β {π¦ β On β£
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)} β β© {π¦
β On β£ (π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)} β β© {π¦
β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦}) |
28 | 26, 27 | ax-mp 5 |
. . . 4
β’ β© {π¦
β On β£ (π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)} β β© {π¦
β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} |
29 | | rankval2 9817 |
. . . . 5
β’
((π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β V β
(rankβ(π
1ββͺ
π₯ β π΄ suc (rankβπ₯))) = β© {π¦ β On β£
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)}) |
30 | 21, 29 | ax-mp 5 |
. . . 4
β’
(rankβ(π
1ββͺ π₯ β π΄ suc (rankβπ₯))) = β© {π¦ β On β£
(π
1ββͺ π₯ β π΄ suc (rankβπ₯)) β (π
1βπ¦)} |
31 | | intmin 4972 |
. . . . . 6
β’ (βͺ π₯ β π΄ suc (rankβπ₯) β On β β© {π¦
β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} = βͺ π₯ β π΄ suc (rankβπ₯)) |
32 | 14, 31 | ax-mp 5 |
. . . . 5
β’ β© {π¦
β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} = βͺ π₯ β π΄ suc (rankβπ₯) |
33 | 32 | eqcomi 2740 |
. . . 4
β’ βͺ π₯ β π΄ suc (rankβπ₯) = β© {π¦ β On β£ βͺ π₯ β π΄ suc (rankβπ₯) β π¦} |
34 | 28, 30, 33 | 3sstr4i 4025 |
. . 3
β’
(rankβ(π
1ββͺ π₯ β π΄ suc (rankβπ₯))) β βͺ π₯ β π΄ suc (rankβπ₯) |
35 | 23, 34 | sstri 3991 |
. 2
β’
(rankβπ΄)
β βͺ π₯ β π΄ suc (rankβπ₯) |
36 | | iunss 5048 |
. . 3
β’ (βͺ π₯ β π΄ suc (rankβπ₯) β (rankβπ΄) β βπ₯ β π΄ suc (rankβπ₯) β (rankβπ΄)) |
37 | 11 | rankel 9838 |
. . . 4
β’ (π₯ β π΄ β (rankβπ₯) β (rankβπ΄)) |
38 | | rankon 9794 |
. . . . 5
β’
(rankβπ΄)
β On |
39 | 9, 38 | onsucssi 7834 |
. . . 4
β’
((rankβπ₯)
β (rankβπ΄)
β suc (rankβπ₯)
β (rankβπ΄)) |
40 | 37, 39 | sylib 217 |
. . 3
β’ (π₯ β π΄ β suc (rankβπ₯) β (rankβπ΄)) |
41 | 36, 40 | mprgbir 3067 |
. 2
β’ βͺ π₯ β π΄ suc (rankβπ₯) β (rankβπ΄) |
42 | 35, 41 | eqssi 3998 |
1
β’
(rankβπ΄) =
βͺ π₯ β π΄ suc (rankβπ₯) |