MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   GIF version

Theorem rankval4 9763
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankval4 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . 6 𝑥𝐴
2 nfcv 2891 . . . . . . 7 𝑥𝑅1
3 nfiu1 4977 . . . . . . 7 𝑥 𝑥𝐴 suc (rank‘𝑥)
42, 3nffv 6832 . . . . . 6 𝑥(𝑅1 𝑥𝐴 suc (rank‘𝑥))
51, 4dfssf 3926 . . . . 5 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
6 vex 3440 . . . . . . 7 𝑥 ∈ V
76rankid 9729 . . . . . 6 𝑥 ∈ (𝑅1‘suc (rank‘𝑥))
8 ssiun2 4996 . . . . . . . 8 (𝑥𝐴 → suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥))
9 rankon 9691 . . . . . . . . . 10 (rank‘𝑥) ∈ On
109onsuci 7772 . . . . . . . . 9 suc (rank‘𝑥) ∈ On
11 rankr1b.1 . . . . . . . . . 10 𝐴 ∈ V
1210rgenw 3048 . . . . . . . . . 10 𝑥𝐴 suc (rank‘𝑥) ∈ On
13 iunon 8262 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ∀𝑥𝐴 suc (rank‘𝑥) ∈ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
1411, 12, 13mp2an 692 . . . . . . . . 9 𝑥𝐴 suc (rank‘𝑥) ∈ On
15 r1ord3 9678 . . . . . . . . 9 ((suc (rank‘𝑥) ∈ On ∧ 𝑥𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
1610, 14, 15mp2an 692 . . . . . . . 8 (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
178, 16syl 17 . . . . . . 7 (𝑥𝐴 → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
1817sseld 3934 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ (𝑅1‘suc (rank‘𝑥)) → 𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
197, 18mpi 20 . . . . 5 (𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
205, 19mpgbir 1799 . . . 4 𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))
21 fvex 6835 . . . . 5 (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V
2221rankss 9745 . . . 4 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))))
2320, 22ax-mp 5 . . 3 (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥)))
24 r1ord3 9678 . . . . . . 7 (( 𝑥𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2514, 24mpan 690 . . . . . 6 (𝑦 ∈ On → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2625ss2rabi 4028 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
27 intss 4919 . . . . 5 ({𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
2826, 27ax-mp 5 . . . 4 {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
29 rankval2 9714 . . . . 5 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
3021, 29ax-mp 5 . . . 4 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
31 intmin 4918 . . . . . 6 ( 𝑥𝐴 suc (rank‘𝑥) ∈ On → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
3214, 31ax-mp 5 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥)
3332eqcomi 2738 . . . 4 𝑥𝐴 suc (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
3428, 30, 333sstr4i 3987 . . 3 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) ⊆ 𝑥𝐴 suc (rank‘𝑥)
3523, 34sstri 3945 . 2 (rank‘𝐴) ⊆ 𝑥𝐴 suc (rank‘𝑥)
36 iunss 4994 . . 3 ( 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
3711rankel 9735 . . . 4 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
38 rankon 9691 . . . . 5 (rank‘𝐴) ∈ On
399, 38onsucssi 7774 . . . 4 ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘𝐴))
4037, 39sylib 218 . . 3 (𝑥𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴))
4136, 40mprgbir 3051 . 2 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)
4235, 41eqssi 3952 1 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903   cint 4896   ciun 4941  Oncon0 6307  suc csuc 6309  cfv 6482  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by:  rankbnd  9764  rankc1  9766  scottrankd  44241
  Copyright terms: Public domain W3C validator