![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankvalb | Structured version Visualization version GIF version |
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 8963 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
rankvalb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rank 8912 | . 2 ⊢ rank = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)}) | |
2 | eleq1 2894 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝑥))) | |
3 | 2 | rabbidv 3402 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
4 | 3 | inteqd 4704 | . 2 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
5 | elex 3429 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
6 | rankwflemb 8940 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
7 | intexrab 5047 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) | |
8 | 6, 7 | sylbb 211 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) |
9 | 1, 4, 5, 8 | fvmptd3 6555 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 {crab 3121 Vcvv 3414 ∪ cuni 4660 ∩ cint 4699 “ cima 5349 Oncon0 5967 suc csuc 5969 ‘cfv 6127 𝑅1cr1 8909 rankcrnk 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-r1 8911 df-rank 8912 |
This theorem is referenced by: rankr1ai 8945 rankidb 8947 rankval 8963 |
Copyright terms: Public domain | W3C validator |