| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankvalb | Structured version Visualization version GIF version | ||
| Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9835 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| rankvalb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rank 9784 | . 2 ⊢ rank = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)}) | |
| 2 | eleq1 2823 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝑥))) | |
| 3 | 2 | rabbidv 3428 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
| 4 | 3 | inteqd 4932 | . 2 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
| 5 | elex 3485 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
| 6 | rankwflemb 9812 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
| 7 | intexrab 5322 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) | |
| 8 | 6, 7 | sylbb 219 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 7014 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 Vcvv 3464 ∪ cuni 4888 ∩ cint 4927 “ cima 5662 Oncon0 6357 suc csuc 6359 ‘cfv 6536 𝑅1cr1 9781 rankcrnk 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-rank 9784 |
| This theorem is referenced by: rankr1ai 9817 rankidb 9819 rankval 9835 |
| Copyright terms: Public domain | W3C validator |