MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankvalb Structured version   Visualization version   GIF version

Theorem rankvalb 9553
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9572 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
rankvalb (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankvalb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rank 9521 . 2 rank = (𝑦 ∈ V ↦ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)})
2 eleq1 2826 . . . 4 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝑥)))
32rabbidv 3413 . . 3 (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
43inteqd 4886 . 2 (𝑦 = 𝐴 {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
5 elex 3449 . 2 (𝐴 (𝑅1 “ On) → 𝐴 ∈ V)
6 rankwflemb 9549 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
7 intexrab 5266 . . 3 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V)
86, 7sylbb 218 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V)
91, 4, 5, 8fvmptd3 6900 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3431   cuni 4841   cint 4881  cima 5594  Oncon0 6268  suc csuc 6270  cfv 6435  𝑅1cr1 9518  rankcrnk 9519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-r1 9520  df-rank 9521
This theorem is referenced by:  rankr1ai  9554  rankidb  9556  rankval  9572
  Copyright terms: Public domain W3C validator