MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankf Structured version   Visualization version   GIF version

Theorem rankf 9723
Description: The domain and codomain of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.)
Assertion
Ref Expression
rankf rank: (𝑅1 “ On)⟶On

Proof of Theorem rankf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rank 9694 . . . 4 rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
21funmpt2 6539 . . 3 Fun rank
3 mptv 5208 . . . . . 6 (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
41, 3eqtri 2752 . . . . 5 rank = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
54dmeqi 5858 . . . 4 dom rank = dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
6 dmopab 5869 . . . . 5 dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = {𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}}
7 eqabcb 2869 . . . . . 6 ({𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On) ↔ ∀𝑥(∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 𝑥 (𝑅1 “ On)))
8 rankwflemb 9722 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦))
9 intexrab 5297 . . . . . . 7 (∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦) ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V)
10 isset 3458 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V ↔ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
118, 9, 103bitrri 298 . . . . . 6 (∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 𝑥 (𝑅1 “ On))
127, 11mpgbir 1799 . . . . 5 {𝑥 ∣ ∃𝑧 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On)
136, 12eqtri 2752 . . . 4 dom {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}} = (𝑅1 “ On)
145, 13eqtri 2752 . . 3 dom rank = (𝑅1 “ On)
15 df-fn 6502 . . 3 (rank Fn (𝑅1 “ On) ↔ (Fun rank ∧ dom rank = (𝑅1 “ On)))
162, 14, 15mpbir2an 711 . 2 rank Fn (𝑅1 “ On)
17 rabn0 4348 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc 𝑦))
188, 17bitr4i 278 . . . 4 (𝑥 (𝑅1 “ On) ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
19 intex 5294 . . . . . 6 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V)
20 vex 3448 . . . . . . 7 𝑥 ∈ V
211fvmpt2 6961 . . . . . . 7 ((𝑥 ∈ V ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V) → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
2220, 21mpan 690 . . . . . 6 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ V → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
2319, 22sylbi 217 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
24 ssrab2 4039 . . . . . 6 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
25 oninton 7751 . . . . . 6 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ On)
2624, 25mpan 690 . . . . 5 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ On)
2723, 26eqeltrd 2828 . . . 4 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) ∈ On)
2818, 27sylbi 217 . . 3 (𝑥 (𝑅1 “ On) → (rank‘𝑥) ∈ On)
2928rgen 3046 . 2 𝑥 (𝑅1 “ On)(rank‘𝑥) ∈ On
30 ffnfv 7073 . 2 (rank: (𝑅1 “ On)⟶On ↔ (rank Fn (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(rank‘𝑥) ∈ On))
3116, 29, 30mpbir2an 711 1 rank: (𝑅1 “ On)⟶On
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292   cuni 4867   cint 4906  {copab 5164  cmpt 5183  dom cdm 5631  cima 5634  Oncon0 6320  suc csuc 6322  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  rankon  9724  rankvaln  9728  tcrank  9813  hsmexlem4  10358  hsmexlem5  10359  grur1  10749  aomclem4  43039  rankrelp  44943
  Copyright terms: Public domain W3C validator