Step | Hyp | Ref
| Expression |
1 | | df-rank 9523 |
. . . 4
⊢ rank =
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
2 | 1 | funmpt2 6473 |
. . 3
⊢ Fun
rank |
3 | | mptv 5190 |
. . . . . 6
⊢ (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) = {〈𝑥, 𝑧〉 ∣ 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} |
4 | 1, 3 | eqtri 2766 |
. . . . 5
⊢ rank =
{〈𝑥, 𝑧〉 ∣ 𝑧 = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} |
5 | 4 | dmeqi 5813 |
. . . 4
⊢ dom rank
= dom {〈𝑥, 𝑧〉 ∣ 𝑧 = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} |
6 | | dmopab 5824 |
. . . . 5
⊢ dom
{〈𝑥, 𝑧〉 ∣ 𝑧 = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} = {𝑥 ∣ ∃𝑧 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} |
7 | | abeq1 2873 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑧 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} = ∪
(𝑅1 “ On) ↔ ∀𝑥(∃𝑧 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ↔ 𝑥 ∈ ∪
(𝑅1 “ On))) |
8 | | rankwflemb 9551 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc
𝑦)) |
9 | | intexrab 5264 |
. . . . . . 7
⊢
(∃𝑦 ∈ On
𝑥 ∈
(𝑅1‘suc 𝑦) ↔ ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ V) |
10 | | isset 3445 |
. . . . . . 7
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ V ↔ ∃𝑧 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
11 | 8, 9, 10 | 3bitrri 298 |
. . . . . 6
⊢
(∃𝑧 𝑧 = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ↔ 𝑥 ∈ ∪
(𝑅1 “ On)) |
12 | 7, 11 | mpgbir 1802 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑧 𝑧 = ∩ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} = ∪
(𝑅1 “ On) |
13 | 6, 12 | eqtri 2766 |
. . . 4
⊢ dom
{〈𝑥, 𝑧〉 ∣ 𝑧 = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}} = ∪
(𝑅1 “ On) |
14 | 5, 13 | eqtri 2766 |
. . 3
⊢ dom rank
= ∪ (𝑅1 “
On) |
15 | | df-fn 6436 |
. . 3
⊢ (rank Fn
∪ (𝑅1 “ On) ↔ (Fun
rank ∧ dom rank = ∪ (𝑅1
“ On))) |
16 | 2, 14, 15 | mpbir2an 708 |
. 2
⊢ rank Fn
∪ (𝑅1 “
On) |
17 | | rabn0 4319 |
. . . . 5
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘suc
𝑦)) |
18 | 8, 17 | bitr4i 277 |
. . . 4
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅) |
19 | | intex 5261 |
. . . . . 6
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅ ↔ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ V) |
20 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
21 | 1 | fvmpt2 6886 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ V) → (rank‘𝑥) = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
22 | 20, 21 | mpan 687 |
. . . . . 6
⊢ (∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ V → (rank‘𝑥) = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
23 | 19, 22 | sylbi 216 |
. . . . 5
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) = ∩
{𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
24 | | ssrab2 4013 |
. . . . . 6
⊢ {𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ⊆ On |
25 | | oninton 7645 |
. . . . . 6
⊢ (({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ≠ ∅) →
∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc
𝑦)} ∈
On) |
26 | 24, 25 | mpan 687 |
. . . . 5
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅ → ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ∈ On) |
27 | 23, 26 | eqeltrd 2839 |
. . . 4
⊢ ({𝑦 ∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)} ≠ ∅ → (rank‘𝑥) ∈ On) |
28 | 18, 27 | sylbi 216 |
. . 3
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) →
(rank‘𝑥) ∈
On) |
29 | 28 | rgen 3074 |
. 2
⊢
∀𝑥 ∈
∪ (𝑅1 “
On)(rank‘𝑥) ∈
On |
30 | | ffnfv 6992 |
. 2
⊢
(rank:∪ (𝑅1 “
On)⟶On ↔ (rank Fn ∪
(𝑅1 “ On) ∧ ∀𝑥 ∈ ∪
(𝑅1 “ On)(rank‘𝑥) ∈ On)) |
31 | 16, 29, 30 | mpbir2an 708 |
1
⊢
rank:∪ (𝑅1 “
On)⟶On |