MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval Structured version   Visualization version   GIF version

Theorem rankval 8929
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Hypothesis
Ref Expression
rankval.1 𝐴 ∈ V
Assertion
Ref Expression
rankval (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval
StepHypRef Expression
1 rankval.1 . . 3 𝐴 ∈ V
2 unir1 8926 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2877 . 2 𝐴 (𝑅1 “ On)
4 rankvalb 8910 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
53, 4ax-mp 5 1 (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  {crab 3093  Vcvv 3385   cuni 4628   cint 4667  cima 5315  Oncon0 5941  suc csuc 5943  cfv 6101  𝑅1cr1 8875  rankcrnk 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-reg 8739  ax-inf2 8788
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-r1 8877  df-rank 8878
This theorem is referenced by:  rankvalg  8930  rankeq1o  32791
  Copyright terms: Public domain W3C validator