![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankval2 | Structured version Visualization version GIF version |
Description: Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
rankval2 | ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankvalg 8964 | . 2 ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
2 | r1suc 8917 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1‘𝑥)) | |
3 | 2 | eleq2d 2892 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝑥))) |
4 | fvex 6450 | . . . . . 6 ⊢ (𝑅1‘𝑥) ∈ V | |
5 | 4 | elpw2 5052 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥)) |
6 | 3, 5 | syl6bb 279 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥))) |
7 | 6 | rabbiia 3397 | . . 3 ⊢ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)} |
8 | 7 | inteqi 4703 | . 2 ⊢ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)} |
9 | 1, 8 | syl6eq 2877 | 1 ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 {crab 3121 ⊆ wss 3798 𝒫 cpw 4380 ∩ cint 4699 Oncon0 5967 suc csuc 5969 ‘cfv 6127 𝑅1cr1 8909 rankcrnk 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-reg 8773 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-r1 8911 df-rank 8912 |
This theorem is referenced by: rankval4 9014 |
Copyright terms: Public domain | W3C validator |