![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankval2 | Structured version Visualization version GIF version |
Description: Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
rankval2 | β’ (π΄ β π΅ β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βπ₯)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankvalg 9815 | . 2 β’ (π΄ β π΅ β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βsuc π₯)}) | |
2 | r1suc 9768 | . . . . . 6 β’ (π₯ β On β (π 1βsuc π₯) = π« (π 1βπ₯)) | |
3 | 2 | eleq2d 2818 | . . . . 5 β’ (π₯ β On β (π΄ β (π 1βsuc π₯) β π΄ β π« (π 1βπ₯))) |
4 | fvex 6904 | . . . . . 6 β’ (π 1βπ₯) β V | |
5 | 4 | elpw2 5345 | . . . . 5 β’ (π΄ β π« (π 1βπ₯) β π΄ β (π 1βπ₯)) |
6 | 3, 5 | bitrdi 287 | . . . 4 β’ (π₯ β On β (π΄ β (π 1βsuc π₯) β π΄ β (π 1βπ₯))) |
7 | 6 | rabbiia 3435 | . . 3 β’ {π₯ β On β£ π΄ β (π 1βsuc π₯)} = {π₯ β On β£ π΄ β (π 1βπ₯)} |
8 | 7 | inteqi 4954 | . 2 β’ β© {π₯ β On β£ π΄ β (π 1βsuc π₯)} = β© {π₯ β On β£ π΄ β (π 1βπ₯)} |
9 | 1, 8 | eqtrdi 2787 | 1 β’ (π΄ β π΅ β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βπ₯)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 β wss 3948 π« cpw 4602 β© cint 4950 Oncon0 6364 suc csuc 6366 βcfv 6543 π 1cr1 9760 rankcrnk 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-reg 9590 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-r1 9762 df-rank 9763 |
This theorem is referenced by: rankval4 9865 |
Copyright terms: Public domain | W3C validator |