MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1funlim Structured version   Visualization version   GIF version

Theorem r1funlim 9666
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9667 avoids ax-rep 5219.) (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1funlim (Fun 𝑅1 ∧ Lim dom 𝑅1)

Proof of Theorem r1funlim
StepHypRef Expression
1 rdgfun 8341 . . 3 Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
2 df-r1 9664 . . . 4 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32funeqi 6507 . . 3 (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))
41, 3mpbir 231 . 2 Fun 𝑅1
5 rdgdmlim 8342 . . 3 Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
62dmeqi 5848 . . . 4 dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
7 limeq 6323 . . . 4 (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)))
86, 7ax-mp 5 . . 3 (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))
95, 8mpbir 231 . 2 Lim dom 𝑅1
104, 9pm3.2i 470 1 (Fun 𝑅1 ∧ Lim dom 𝑅1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  Vcvv 3437  c0 4282  𝒫 cpw 4549  cmpt 5174  dom cdm 5619  Lim wlim 6312  Fun wfun 6480  reccrdg 8334  𝑅1cr1 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9664
This theorem is referenced by:  r1limg  9671  r1fin  9673  r1tr  9676  r1ordg  9678  r1ord3g  9679  r1pwss  9684  r1val1  9686  rankwflemb  9693  r1elwf  9696  rankr1ai  9698  rankdmr1  9701  rankr1ag  9702  rankr1bg  9703  r1elssi  9705  pwwf  9707  unwf  9710  rankr1clem  9720  rankr1c  9721  rankval3b  9726  rankonidlem  9728  onssr1  9731  rankeq0b  9760  ackbij2  10140  wunom  10618  r11  35126  r12  35127  r1filimi  35135  r1filim  35136  r1omfi  35137  r1omhf  35138  r1omfv  35142
  Copyright terms: Public domain W3C validator