Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9262 avoids ax-rep 5151.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8074 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | df-r1 9259 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | funeqi 6354 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
4 | 1, 3 | mpbir 234 | . 2 ⊢ Fun 𝑅1 |
5 | rdgdmlim 8075 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
6 | 2 | dmeqi 5741 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
7 | limeq 6178 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
9 | 5, 8 | mpbir 234 | . 2 ⊢ Lim dom 𝑅1 |
10 | 4, 9 | pm3.2i 474 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 Vcvv 3397 ∅c0 4209 𝒫 cpw 4485 ↦ cmpt 5107 dom cdm 5519 Lim wlim 6167 Fun wfun 6327 reccrdg 8067 𝑅1cr1 9257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-r1 9259 |
This theorem is referenced by: r1limg 9266 r1fin 9268 r1tr 9271 r1ordg 9273 r1ord3g 9274 r1pwss 9279 r1val1 9281 rankwflemb 9288 r1elwf 9291 rankr1ai 9293 rankdmr1 9296 rankr1ag 9297 rankr1bg 9298 r1elssi 9300 pwwf 9302 unwf 9305 rankr1clem 9315 rankr1c 9316 rankval3b 9321 rankonidlem 9323 onssr1 9326 rankeq0b 9355 ackbij2 9736 wunom 10213 |
Copyright terms: Public domain | W3C validator |