MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1funlim Structured version   Visualization version   GIF version

Theorem r1funlim 9785
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9786 avoids ax-rep 5254.) (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1funlim (Fun 𝑅1 ∧ Lim dom 𝑅1)

Proof of Theorem r1funlim
StepHypRef Expression
1 rdgfun 8435 . . 3 Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
2 df-r1 9783 . . . 4 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32funeqi 6562 . . 3 (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))
41, 3mpbir 231 . 2 Fun 𝑅1
5 rdgdmlim 8436 . . 3 Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
62dmeqi 5889 . . . 4 dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
7 limeq 6369 . . . 4 (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)))
86, 7ax-mp 5 . . 3 (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))
95, 8mpbir 231 . 2 Lim dom 𝑅1
104, 9pm3.2i 470 1 (Fun 𝑅1 ∧ Lim dom 𝑅1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3464  c0 4313  𝒫 cpw 4580  cmpt 5206  dom cdm 5659  Lim wlim 6358  Fun wfun 6530  reccrdg 8428  𝑅1cr1 9781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-r1 9783
This theorem is referenced by:  r1limg  9790  r1fin  9792  r1tr  9795  r1ordg  9797  r1ord3g  9798  r1pwss  9803  r1val1  9805  rankwflemb  9812  r1elwf  9815  rankr1ai  9817  rankdmr1  9820  rankr1ag  9821  rankr1bg  9822  r1elssi  9824  pwwf  9826  unwf  9829  rankr1clem  9839  rankr1c  9840  rankval3b  9845  rankonidlem  9847  onssr1  9850  rankeq0b  9879  ackbij2  10261  wunom  10739
  Copyright terms: Public domain W3C validator