![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9764 avoids ax-rep 5285.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8418 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | df-r1 9761 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | funeqi 6569 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ Fun 𝑅1 |
5 | rdgdmlim 8419 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
6 | 2 | dmeqi 5904 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
7 | limeq 6376 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
9 | 5, 8 | mpbir 230 | . 2 ⊢ Lim dom 𝑅1 |
10 | 4, 9 | pm3.2i 471 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 Vcvv 3474 ∅c0 4322 𝒫 cpw 4602 ↦ cmpt 5231 dom cdm 5676 Lim wlim 6365 Fun wfun 6537 reccrdg 8411 𝑅1cr1 9759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 |
This theorem is referenced by: r1limg 9768 r1fin 9770 r1tr 9773 r1ordg 9775 r1ord3g 9776 r1pwss 9781 r1val1 9783 rankwflemb 9790 r1elwf 9793 rankr1ai 9795 rankdmr1 9798 rankr1ag 9799 rankr1bg 9800 r1elssi 9802 pwwf 9804 unwf 9807 rankr1clem 9817 rankr1c 9818 rankval3b 9823 rankonidlem 9825 onssr1 9828 rankeq0b 9857 ackbij2 10240 wunom 10717 |
Copyright terms: Public domain | W3C validator |