| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9720 avoids ax-rep 5234.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8384 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 2 | df-r1 9717 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | funeqi 6537 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ Fun 𝑅1 |
| 5 | rdgdmlim 8385 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 6 | 2 | dmeqi 5868 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
| 7 | limeq 6344 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 9 | 5, 8 | mpbir 231 | . 2 ⊢ Lim dom 𝑅1 |
| 10 | 4, 9 | pm3.2i 470 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 ↦ cmpt 5188 dom cdm 5638 Lim wlim 6333 Fun wfun 6505 reccrdg 8377 𝑅1cr1 9715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 |
| This theorem is referenced by: r1limg 9724 r1fin 9726 r1tr 9729 r1ordg 9731 r1ord3g 9732 r1pwss 9737 r1val1 9739 rankwflemb 9746 r1elwf 9749 rankr1ai 9751 rankdmr1 9754 rankr1ag 9755 rankr1bg 9756 r1elssi 9758 pwwf 9760 unwf 9763 rankr1clem 9773 rankr1c 9774 rankval3b 9779 rankonidlem 9781 onssr1 9784 rankeq0b 9813 ackbij2 10195 wunom 10673 |
| Copyright terms: Public domain | W3C validator |