| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9667 avoids ax-rep 5219.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8341 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 2 | df-r1 9664 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | funeqi 6507 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ Fun 𝑅1 |
| 5 | rdgdmlim 8342 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 6 | 2 | dmeqi 5848 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
| 7 | limeq 6323 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 9 | 5, 8 | mpbir 231 | . 2 ⊢ Lim dom 𝑅1 |
| 10 | 4, 9 | pm3.2i 470 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 Vcvv 3437 ∅c0 4282 𝒫 cpw 4549 ↦ cmpt 5174 dom cdm 5619 Lim wlim 6312 Fun wfun 6480 reccrdg 8334 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9664 |
| This theorem is referenced by: r1limg 9671 r1fin 9673 r1tr 9676 r1ordg 9678 r1ord3g 9679 r1pwss 9684 r1val1 9686 rankwflemb 9693 r1elwf 9696 rankr1ai 9698 rankdmr1 9701 rankr1ag 9702 rankr1bg 9703 r1elssi 9705 pwwf 9707 unwf 9710 rankr1clem 9720 rankr1c 9721 rankval3b 9726 rankonidlem 9728 onssr1 9731 rankeq0b 9760 ackbij2 10140 wunom 10618 r11 35126 r12 35127 r1filimi 35135 r1filim 35136 r1omfi 35137 r1omhf 35138 r1omfv 35142 |
| Copyright terms: Public domain | W3C validator |