Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9573 avoids ax-rep 5218.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8278 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | df-r1 9570 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | funeqi 6484 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ Fun 𝑅1 |
5 | rdgdmlim 8279 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
6 | 2 | dmeqi 5826 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
7 | limeq 6293 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
9 | 5, 8 | mpbir 230 | . 2 ⊢ Lim dom 𝑅1 |
10 | 4, 9 | pm3.2i 472 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 Vcvv 3437 ∅c0 4262 𝒫 cpw 4539 ↦ cmpt 5164 dom cdm 5600 Lim wlim 6282 Fun wfun 6452 reccrdg 8271 𝑅1cr1 9568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-r1 9570 |
This theorem is referenced by: r1limg 9577 r1fin 9579 r1tr 9582 r1ordg 9584 r1ord3g 9585 r1pwss 9590 r1val1 9592 rankwflemb 9599 r1elwf 9602 rankr1ai 9604 rankdmr1 9607 rankr1ag 9608 rankr1bg 9609 r1elssi 9611 pwwf 9613 unwf 9616 rankr1clem 9626 rankr1c 9627 rankval3b 9632 rankonidlem 9634 onssr1 9637 rankeq0b 9666 ackbij2 10049 wunom 10526 |
Copyright terms: Public domain | W3C validator |