| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9660 avoids ax-rep 5217.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8335 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 2 | df-r1 9657 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | funeqi 6502 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ Fun 𝑅1 |
| 5 | rdgdmlim 8336 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 6 | 2 | dmeqi 5844 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
| 7 | limeq 6318 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
| 9 | 5, 8 | mpbir 231 | . 2 ⊢ Lim dom 𝑅1 |
| 10 | 4, 9 | pm3.2i 470 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 Vcvv 3436 ∅c0 4283 𝒫 cpw 4550 ↦ cmpt 5172 dom cdm 5616 Lim wlim 6307 Fun wfun 6475 reccrdg 8328 𝑅1cr1 9655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 |
| This theorem is referenced by: r1limg 9664 r1fin 9666 r1tr 9669 r1ordg 9671 r1ord3g 9672 r1pwss 9677 r1val1 9679 rankwflemb 9686 r1elwf 9689 rankr1ai 9691 rankdmr1 9694 rankr1ag 9695 rankr1bg 9696 r1elssi 9698 pwwf 9700 unwf 9703 rankr1clem 9713 rankr1c 9714 rankval3b 9719 rankonidlem 9721 onssr1 9724 rankeq0b 9753 ackbij2 10133 wunom 10611 r11 35103 r12 35104 r1filimi 35112 r1filim 35113 r1omfi 35114 r1omhf 35115 r1omfv 35119 |
| Copyright terms: Public domain | W3C validator |