![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1funlim | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9805 avoids ax-rep 5285.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1funlim | ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8455 | . . 3 ⊢ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | df-r1 9802 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | funeqi 6589 | . . 3 ⊢ (Fun 𝑅1 ↔ Fun rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
4 | 1, 3 | mpbir 231 | . 2 ⊢ Fun 𝑅1 |
5 | rdgdmlim 8456 | . . 3 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
6 | 2 | dmeqi 5918 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
7 | limeq 6398 | . . . 4 ⊢ (dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅))) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝑅1 ↔ Lim dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)) |
9 | 5, 8 | mpbir 231 | . 2 ⊢ Lim dom 𝑅1 |
10 | 4, 9 | pm3.2i 470 | 1 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 Vcvv 3478 ∅c0 4339 𝒫 cpw 4605 ↦ cmpt 5231 dom cdm 5689 Lim wlim 6387 Fun wfun 6557 reccrdg 8448 𝑅1cr1 9800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 |
This theorem is referenced by: r1limg 9809 r1fin 9811 r1tr 9814 r1ordg 9816 r1ord3g 9817 r1pwss 9822 r1val1 9824 rankwflemb 9831 r1elwf 9834 rankr1ai 9836 rankdmr1 9839 rankr1ag 9840 rankr1bg 9841 r1elssi 9843 pwwf 9845 unwf 9848 rankr1clem 9858 rankr1c 9859 rankval3b 9864 rankonidlem 9866 onssr1 9869 rankeq0b 9898 ackbij2 10280 wunom 10758 |
Copyright terms: Public domain | W3C validator |