MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-r1 Structured version   Visualization version   GIF version

Definition df-r1 9833
Description: Define the cumulative hierarchy of sets function, using Takeuti and Zaring's notation (𝑅1). Starting with the empty set, this function builds up layers of sets where the next layer is the power set of the previous layer (and the union of previous layers when the argument is a limit ordinal). Using the Axiom of Regularity, we can show that any set whatsoever belongs to one of the layers of this hierarchy (see tz9.13 9860). Our definition expresses Definition 9.9 of [TakeutiZaring] p. 76 in a closed form, from which we derive the recursive definition as Theorems r10 9837, r1suc 9839, and r1lim 9841. Theorem r1val1 9855 shows a recursive definition that works for all values, and Theorems r1val2 9906 and r1val3 9907 show the value expressed in terms of rank. Other notations for this function are R with the argument as a subscript (Equation 3.1 of [BellMachover] p. 477), V with a subscript (Definition of [Enderton] p. 202), M with a subscript (Definition 15.19 of [Monk1] p. 113), the capital Greek letter psi (Definition of [Mendelson] p. 281), and bold-face R (Definition 2.1 of [Kunen] p. 95). (Contributed by NM, 2-Sep-2003.)
Assertion
Ref Expression
df-r1 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)

Detailed syntax breakdown of Definition df-r1
StepHypRef Expression
1 cr1 9831 . 2 class 𝑅1
2 vx . . . 4 setvar 𝑥
3 cvv 3488 . . . 4 class V
42cv 1536 . . . . 5 class 𝑥
54cpw 4622 . . . 4 class 𝒫 𝑥
62, 3, 5cmpt 5249 . . 3 class (𝑥 ∈ V ↦ 𝒫 𝑥)
7 c0 4352 . . 3 class
86, 7crdg 8465 . 2 class rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
91, 8wceq 1537 1 wff 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
Colors of variables: wff setvar class
This definition is referenced by:  r1funlim  9835  r1fnon  9836  r10  9837  r1sucg  9838  r1limg  9840
  Copyright terms: Public domain W3C validator