MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-r1 Structured version   Visualization version   GIF version

Definition df-r1 9664
Description: Define the cumulative hierarchy of sets function, using Takeuti and Zaring's notation (𝑅1). Starting with the empty set, this function builds up layers of sets where the next layer is the power set of the previous layer (and the union of previous layers when the argument is a limit ordinal). Using the Axiom of Regularity, we can show that any set whatsoever belongs to one of the layers of this hierarchy (see tz9.13 9691). Our definition expresses Definition 9.9 of [TakeutiZaring] p. 76 in a closed form, from which we derive the recursive definition as Theorems r10 9668, r1suc 9670, and r1lim 9672. Theorem r1val1 9686 shows a recursive definition that works for all values, and Theorems r1val2 9737 and r1val3 9738 show the value expressed in terms of rank. Other notations for this function are R with the argument as a subscript (Equation 3.1 of [BellMachover] p. 477), V with a subscript (Definition of [Enderton] p. 202), M with a subscript (Definition 15.19 of [Monk1] p. 113), the capital Greek letter psi (Definition of [Mendelson] p. 281), and bold-face R (Definition 2.1 of [Kunen] p. 95). (Contributed by NM, 2-Sep-2003.)
Assertion
Ref Expression
df-r1 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)

Detailed syntax breakdown of Definition df-r1
StepHypRef Expression
1 cr1 9662 . 2 class 𝑅1
2 vx . . . 4 setvar 𝑥
3 cvv 3437 . . . 4 class V
42cv 1540 . . . . 5 class 𝑥
54cpw 4549 . . . 4 class 𝒫 𝑥
62, 3, 5cmpt 5174 . . 3 class (𝑥 ∈ V ↦ 𝒫 𝑥)
7 c0 4282 . . 3 class
86, 7crdg 8334 . 2 class rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
91, 8wceq 1541 1 wff 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
Colors of variables: wff setvar class
This definition is referenced by:  r1funlim  9666  r1fnon  9667  r10  9668  r1sucg  9669  r1limg  9671
  Copyright terms: Public domain W3C validator