Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3 Structured version   Visualization version   GIF version

Theorem rankval3 9118
 Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
rankval3.1 𝐴 ∈ V
Assertion
Ref Expression
rankval3 (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem rankval3
StepHypRef Expression
1 rankval3.1 . . 3 𝐴 ∈ V
2 unir1 9091 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2881 . 2 𝐴 (𝑅1 “ On)
4 rankval3b 9104 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
53, 4ax-mp 5 1 (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1522   ∈ wcel 2080  ∀wral 3104  {crab 3108  Vcvv 3436  ∪ cuni 4747  ∩ cint 4784   “ cima 5449  Oncon0 6069  ‘cfv 6228  𝑅1cr1 9040  rankcrnk 9041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-reg 8905  ax-inf2 8953 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-om 7440  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-r1 9042  df-rank 9043 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator