MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1a Structured version   Visualization version   GIF version

Theorem rankr1a 9842
Description: A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 9841 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 9870 for the subset version. (Contributed by Raph Levien, 29-May-2004.)
Hypothesis
Ref Expression
rankid.1 𝐴 ∈ V
Assertion
Ref Expression
rankr1a (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))

Proof of Theorem rankr1a
StepHypRef Expression
1 rankid.1 . . . 4 𝐴 ∈ V
21ssrankr1 9841 . . 3 (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1𝐵)))
3 rankon 9801 . . . 4 (rank‘𝐴) ∈ On
4 ontri1 6383 . . . 4 ((𝐵 ∈ On ∧ (rank‘𝐴) ∈ On) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
53, 4mpan2 691 . . 3 (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
62, 5bitr3d 281 . 2 (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
76con4bid 317 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2107  Vcvv 3457  wss 3924  Oncon0 6349  cfv 6527  𝑅1cr1 9768  rankcrnk 9769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-reg 9598  ax-inf2 9647
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-r1 9770  df-rank 9771
This theorem is referenced by:  r1val2  9843  r1pwALT  9852  elhf2  36114  gruex  44248
  Copyright terms: Public domain W3C validator