![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1a | Structured version Visualization version GIF version |
Description: A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 8995 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 9024 for the subset version. (Contributed by Raph Levien, 29-May-2004.) |
Ref | Expression |
---|---|
rankid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankr1a | ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | ssrankr1 8995 | . . 3 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
3 | rankon 8955 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
4 | ontri1 6010 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (rank‘𝐴) ∈ On) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) | |
5 | 3, 4 | mpan2 681 | . . 3 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) |
6 | 2, 5 | bitr3d 273 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) |
7 | 6 | con4bid 309 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 Oncon0 5976 ‘cfv 6135 𝑅1cr1 8922 rankcrnk 8923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-reg 8786 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-r1 8924 df-rank 8925 |
This theorem is referenced by: r1val2 8997 r1pwALT 9006 elhf2 32871 |
Copyright terms: Public domain | W3C validator |