| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpeq3 | ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 5117 | . . . . 5 ⊢ (𝑆 = 𝑇 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦))) | |
| 2 | 1 | imbi2d 340 | . . . 4 ⊢ (𝑆 = 𝑇 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) |
| 3 | 2 | 2ralbidv 3203 | . . 3 ⊢ (𝑆 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) |
| 4 | 3 | anbi2d 630 | . 2 ⊢ (𝑆 = 𝑇 → ((𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑇(𝐻‘𝑦))))) |
| 5 | df-relp 44905 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 6 | df-relp 44905 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3046 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 RelPres wrelp 44904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-ral 3047 df-br 5116 df-relp 44905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |