Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpeq3 Structured version   Visualization version   GIF version

Theorem relpeq3 44924
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpeq3 (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵)))

Proof of Theorem relpeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5125 . . . . 5 (𝑆 = 𝑇 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)𝑇(𝐻𝑦)))
21imbi2d 340 . . . 4 (𝑆 = 𝑇 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 → (𝐻𝑥)𝑇(𝐻𝑦))))
322ralbidv 3208 . . 3 (𝑆 = 𝑇 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑇(𝐻𝑦))))
43anbi2d 630 . 2 (𝑆 = 𝑇 → ((𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑇(𝐻𝑦)))))
5 df-relp 44921 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-relp 44921 . 2 (𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑇(𝐻𝑦))))
74, 5, 63bitr4g 314 1 (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wral 3050   class class class wbr 5123  wf 6537  cfv 6541   RelPres wrelp 44920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726  df-clel 2808  df-ral 3051  df-br 5124  df-relp 44921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator