![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relpeq4 | Structured version Visualization version GIF version |
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
Ref | Expression |
---|---|
relpeq4 | ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6725 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐻:𝐴⟶𝐵 ↔ 𝐻:𝐶⟶𝐵)) | |
2 | raleq 3323 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
3 | 2 | raleqbi1dv 3338 | . . 3 ⊢ (𝐴 = 𝐶 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐶 → ((𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-relp 44953 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-relp 44953 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵) ↔ (𝐻:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3061 class class class wbr 5151 ⟶wf 6565 ‘cfv 6569 RelPres wrelp 44952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2729 df-ral 3062 df-rex 3071 df-fn 6572 df-f 6573 df-relp 44953 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |