Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpeq4 Structured version   Visualization version   GIF version

Theorem relpeq4 44957
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpeq4 (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵)))

Proof of Theorem relpeq4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq2 6725 . . 3 (𝐴 = 𝐶 → (𝐻:𝐴𝐵𝐻:𝐶𝐵))
2 raleq 3323 . . . 4 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
32raleqbi1dv 3338 . . 3 (𝐴 = 𝐶 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
41, 3anbi12d 632 . 2 (𝐴 = 𝐶 → ((𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))))
5 df-relp 44953 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-relp 44953 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
74, 5, 63bitr4g 314 1 (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wral 3061   class class class wbr 5151  wf 6565  cfv 6569   RelPres wrelp 44952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2729  df-ral 3062  df-rex 3071  df-fn 6572  df-f 6573  df-relp 44953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator