Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version |
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | cS | . . 3 class 𝑆 | |
5 | cH | . . 3 class 𝐻 | |
6 | 1, 2, 3, 4, 5 | wiso 6438 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 6436 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | vx | . . . . . . . 8 setvar 𝑥 | |
9 | 8 | cv 1538 | . . . . . . 7 class 𝑥 |
10 | vy | . . . . . . . 8 setvar 𝑦 | |
11 | 10 | cv 1538 | . . . . . . 7 class 𝑦 |
12 | 9, 11, 3 | wbr 5075 | . . . . . 6 wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 6437 | . . . . . . 7 class (𝐻‘𝑥) |
14 | 11, 5 | cfv 6437 | . . . . . . 7 class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 5075 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 205 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 3065 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 3065 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 396 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 205 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 7197 isoeq2 7198 isoeq3 7199 isoeq4 7200 isoeq5 7201 nfiso 7202 isof1o 7203 isof1oidb 7204 isof1oopb 7205 isorel 7206 soisores 7207 soisoi 7208 isoid 7209 isocnv 7210 isocnv2 7211 isocnv3 7212 isores2 7213 isores3 7215 isotr 7216 isoini2 7219 f1oiso 7231 f1owe 7233 smoiso2 8209 alephiso 9863 compssiso 10139 negiso 11964 om2uzisoi 13683 icopnfhmeo 24115 reefiso 25616 logltb 25764 isoun 31043 mgcf1o 31290 xrmulc1cn 31889 sticksstones3 40111 wepwsolem 40874 alephiso2 41172 iso0 41932 fourierdlem54 43708 rrx2plordisom 46080 |
Copyright terms: Public domain | W3C validator |