![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version |
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | cS | . . 3 class 𝑆 | |
5 | cH | . . 3 class 𝐻 | |
6 | 1, 2, 3, 4, 5 | wiso 6545 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 6543 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | vx | . . . . . . . 8 setvar 𝑥 | |
9 | 8 | cv 1541 | . . . . . . 7 class 𝑥 |
10 | vy | . . . . . . . 8 setvar 𝑦 | |
11 | 10 | cv 1541 | . . . . . . 7 class 𝑦 |
12 | 9, 11, 3 | wbr 5149 | . . . . . 6 wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 6544 | . . . . . . 7 class (𝐻‘𝑥) |
14 | 11, 5 | cfv 6544 | . . . . . . 7 class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 5149 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 205 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 3062 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 3062 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 397 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 205 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 7314 isoeq2 7315 isoeq3 7316 isoeq4 7317 isoeq5 7318 nfiso 7319 isof1o 7320 isof1oidb 7321 isof1oopb 7322 isorel 7323 soisores 7324 soisoi 7325 isoid 7326 isocnv 7327 isocnv2 7328 isocnv3 7329 isores2 7330 isores3 7332 isotr 7333 isoini2 7336 f1oiso 7348 f1owe 7350 smoiso2 8369 alephiso 10093 compssiso 10369 negiso 12194 om2uzisoi 13919 icopnfhmeo 24459 reefiso 25960 logltb 26108 isoun 31923 mgcf1o 32173 xrmulc1cn 32910 sticksstones3 40964 wepwsolem 41784 alephiso2 42309 iso0 43066 fourierdlem54 44876 rrx2plordisom 47409 |
Copyright terms: Public domain | W3C validator |