![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version |
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | cS | . . 3 class 𝑆 | |
5 | cH | . . 3 class 𝐻 | |
6 | 1, 2, 3, 4, 5 | wiso 6563 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 6561 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | vx | . . . . . . . 8 setvar 𝑥 | |
9 | 8 | cv 1535 | . . . . . . 7 class 𝑥 |
10 | vy | . . . . . . . 8 setvar 𝑦 | |
11 | 10 | cv 1535 | . . . . . . 7 class 𝑦 |
12 | 9, 11, 3 | wbr 5147 | . . . . . 6 wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 6562 | . . . . . . 7 class (𝐻‘𝑥) |
14 | 11, 5 | cfv 6562 | . . . . . . 7 class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 5147 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 206 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 3058 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 3058 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 395 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 206 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 7336 isoeq2 7337 isoeq3 7338 isoeq4 7339 isoeq5 7340 nfiso 7341 isof1o 7342 isof1oidb 7343 isof1oopb 7344 isorel 7345 soisores 7346 soisoi 7347 isoid 7348 isocnv 7349 isocnv2 7350 isocnv3 7351 isores2 7352 isores3 7354 isotr 7355 isoini2 7358 f1oiso 7370 f1owe 7372 smoiso2 8407 alephiso 10135 compssiso 10411 negiso 12245 om2uzisoi 13991 icopnfhmeo 24987 reefiso 26506 logltb 26656 om2noseqiso 28322 isoun 32716 mgcf1o 32977 xrmulc1cn 33890 sticksstones3 42129 wepwsolem 43030 alephiso2 43547 iso0 44302 fourierdlem54 46115 rrx2plordisom 48572 |
Copyright terms: Public domain | W3C validator |