| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version | ||
| Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | cS | . . 3 class 𝑆 | |
| 5 | cH | . . 3 class 𝐻 | |
| 6 | 1, 2, 3, 4, 5 | wiso 6515 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf1o 6513 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
| 8 | vx | . . . . . . . 8 setvar 𝑥 | |
| 9 | 8 | cv 1539 | . . . . . . 7 class 𝑥 |
| 10 | vy | . . . . . . . 8 setvar 𝑦 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑦 |
| 12 | 9, 11, 3 | wbr 5110 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 6514 | . . . . . . 7 class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 6514 | . . . . . . 7 class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 5110 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wb 206 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 3045 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 3045 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 395 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 206 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isoeq1 7295 isoeq2 7296 isoeq3 7297 isoeq4 7298 isoeq5 7299 nfiso 7300 isof1o 7301 isof1oidb 7302 isof1oopb 7303 isorel 7304 soisores 7305 soisoi 7306 isoid 7307 isocnv 7308 isocnv2 7309 isocnv3 7310 isores2 7311 isores3 7313 isotr 7314 isoini2 7317 f1oiso 7329 f1owe 7331 smoiso2 8341 alephiso 10058 compssiso 10334 negiso 12170 om2uzisoi 13926 icopnfhmeo 24848 reefiso 26365 logltb 26516 onsiso 28176 om2noseqiso 28203 isoun 32632 mgcf1o 32936 xrmulc1cn 33927 sticksstones3 42143 wepwsolem 43038 alephiso2 43554 iso0 44303 fourierdlem54 46165 rrx2plordisom 48716 |
| Copyright terms: Public domain | W3C validator |