MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-isom Structured version   Visualization version   GIF version

Definition df-isom 6539
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wiso 6531 . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
71, 2, 5wf1o 6529 . . 3 wff 𝐻:𝐴1-1-onto𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1539 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1539 . . . . . . 7 class 𝑦
129, 11, 3wbr 5119 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 6530 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 6530 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 5119 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wb 206 . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 3051 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 3051 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 395 . 2 wff (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 206 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  isoeq1  7309  isoeq2  7310  isoeq3  7311  isoeq4  7312  isoeq5  7313  nfiso  7314  isof1o  7315  isof1oidb  7316  isof1oopb  7317  isorel  7318  soisores  7319  soisoi  7320  isoid  7321  isocnv  7322  isocnv2  7323  isocnv3  7324  isores2  7325  isores3  7327  isotr  7328  isoini2  7331  f1oiso  7343  f1owe  7345  smoiso2  8381  alephiso  10110  compssiso  10386  negiso  12220  om2uzisoi  13970  icopnfhmeo  24890  reefiso  26408  logltb  26559  om2noseqiso  28225  isoun  32625  mgcf1o  32929  xrmulc1cn  33907  sticksstones3  42107  wepwsolem  43013  alephiso2  43529  iso0  44279  fourierdlem54  46137  rrx2plordisom  48651
  Copyright terms: Public domain W3C validator