![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version |
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | cS | . . 3 class 𝑆 | |
5 | cH | . . 3 class 𝐻 | |
6 | 1, 2, 3, 4, 5 | wiso 6541 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
7 | 1, 2, 5 | wf1o 6539 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
8 | vx | . . . . . . . 8 setvar 𝑥 | |
9 | 8 | cv 1540 | . . . . . . 7 class 𝑥 |
10 | vy | . . . . . . . 8 setvar 𝑦 | |
11 | 10 | cv 1540 | . . . . . . 7 class 𝑦 |
12 | 9, 11, 3 | wbr 5147 | . . . . . 6 wff 𝑥𝑅𝑦 |
13 | 9, 5 | cfv 6540 | . . . . . . 7 class (𝐻‘𝑥) |
14 | 11, 5 | cfv 6540 | . . . . . . 7 class (𝐻‘𝑦) |
15 | 13, 14, 4 | wbr 5147 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
16 | 12, 15 | wb 205 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
17 | 16, 10, 1 | wral 3061 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
18 | 17, 8, 1 | wral 3061 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
19 | 7, 18 | wa 396 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 6, 19 | wb 205 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 7310 isoeq2 7311 isoeq3 7312 isoeq4 7313 isoeq5 7314 nfiso 7315 isof1o 7316 isof1oidb 7317 isof1oopb 7318 isorel 7319 soisores 7320 soisoi 7321 isoid 7322 isocnv 7323 isocnv2 7324 isocnv3 7325 isores2 7326 isores3 7328 isotr 7329 isoini2 7332 f1oiso 7344 f1owe 7346 smoiso2 8365 alephiso 10089 compssiso 10365 negiso 12190 om2uzisoi 13915 icopnfhmeo 24450 reefiso 25951 logltb 26099 isoun 31910 mgcf1o 32160 xrmulc1cn 32898 sticksstones3 40952 wepwsolem 41769 alephiso2 42294 iso0 43051 fourierdlem54 44862 rrx2plordisom 47362 |
Copyright terms: Public domain | W3C validator |