| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version | ||
| Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | cS | . . 3 class 𝑆 | |
| 5 | cH | . . 3 class 𝐻 | |
| 6 | 1, 2, 3, 4, 5 | wiso 6512 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf1o 6510 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
| 8 | vx | . . . . . . . 8 setvar 𝑥 | |
| 9 | 8 | cv 1539 | . . . . . . 7 class 𝑥 |
| 10 | vy | . . . . . . . 8 setvar 𝑦 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑦 |
| 12 | 9, 11, 3 | wbr 5107 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 6511 | . . . . . . 7 class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 6511 | . . . . . . 7 class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 5107 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wb 206 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 3044 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 3044 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 395 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 206 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isoeq1 7292 isoeq2 7293 isoeq3 7294 isoeq4 7295 isoeq5 7296 nfiso 7297 isof1o 7298 isof1oidb 7299 isof1oopb 7300 isorel 7301 soisores 7302 soisoi 7303 isoid 7304 isocnv 7305 isocnv2 7306 isocnv3 7307 isores2 7308 isores3 7310 isotr 7311 isoini2 7314 f1oiso 7326 f1owe 7328 smoiso2 8338 alephiso 10051 compssiso 10327 negiso 12163 om2uzisoi 13919 icopnfhmeo 24841 reefiso 26358 logltb 26509 onsiso 28169 om2noseqiso 28196 isoun 32625 mgcf1o 32929 xrmulc1cn 33920 sticksstones3 42136 wepwsolem 43031 alephiso2 43547 iso0 44296 fourierdlem54 46158 rrx2plordisom 48712 |
| Copyright terms: Public domain | W3C validator |