MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-isom Structured version   Visualization version   GIF version

Definition df-isom 6508
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wiso 6500 . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
71, 2, 5wf1o 6498 . . 3 wff 𝐻:𝐴1-1-onto𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1539 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1539 . . . . . . 7 class 𝑦
129, 11, 3wbr 5102 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 6499 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 6499 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 5102 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wb 206 . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 3044 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 3044 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 395 . 2 wff (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 206 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  isoeq1  7274  isoeq2  7275  isoeq3  7276  isoeq4  7277  isoeq5  7278  nfiso  7279  isof1o  7280  isof1oidb  7281  isof1oopb  7282  isorel  7283  soisores  7284  soisoi  7285  isoid  7286  isocnv  7287  isocnv2  7288  isocnv3  7289  isores2  7290  isores3  7292  isotr  7293  isoini2  7296  f1oiso  7308  f1owe  7310  smoiso2  8315  alephiso  10027  compssiso  10303  negiso  12139  om2uzisoi  13895  icopnfhmeo  24817  reefiso  26334  logltb  26485  onsiso  28145  om2noseqiso  28172  isoun  32598  mgcf1o  32902  xrmulc1cn  33893  sticksstones3  42109  wepwsolem  43004  alephiso2  43520  iso0  44269  fourierdlem54  46131  rrx2plordisom  48685
  Copyright terms: Public domain W3C validator