MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-isom Structured version   Visualization version   GIF version

Definition df-isom 6520
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wiso 6512 . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
71, 2, 5wf1o 6510 . . 3 wff 𝐻:𝐴1-1-onto𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1539 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1539 . . . . . . 7 class 𝑦
129, 11, 3wbr 5107 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 6511 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 6511 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 5107 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wb 206 . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 3044 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 3044 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 395 . 2 wff (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 206 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  isoeq1  7292  isoeq2  7293  isoeq3  7294  isoeq4  7295  isoeq5  7296  nfiso  7297  isof1o  7298  isof1oidb  7299  isof1oopb  7300  isorel  7301  soisores  7302  soisoi  7303  isoid  7304  isocnv  7305  isocnv2  7306  isocnv3  7307  isores2  7308  isores3  7310  isotr  7311  isoini2  7314  f1oiso  7326  f1owe  7328  smoiso2  8338  alephiso  10051  compssiso  10327  negiso  12163  om2uzisoi  13919  icopnfhmeo  24841  reefiso  26358  logltb  26509  onsiso  28169  om2noseqiso  28196  isoun  32625  mgcf1o  32929  xrmulc1cn  33920  sticksstones3  42136  wepwsolem  43031  alephiso2  43547  iso0  44296  fourierdlem54  46158  rrx2plordisom  48712
  Copyright terms: Public domain W3C validator