| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version GIF version | ||
| Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| df-isom | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | cS | . . 3 class 𝑆 | |
| 5 | cH | . . 3 class 𝐻 | |
| 6 | 1, 2, 3, 4, 5 | wiso 6477 | . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf1o 6475 | . . 3 wff 𝐻:𝐴–1-1-onto→𝐵 |
| 8 | vx | . . . . . . . 8 setvar 𝑥 | |
| 9 | 8 | cv 1540 | . . . . . . 7 class 𝑥 |
| 10 | vy | . . . . . . . 8 setvar 𝑦 | |
| 11 | 10 | cv 1540 | . . . . . . 7 class 𝑦 |
| 12 | 9, 11, 3 | wbr 5086 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 6476 | . . . . . . 7 class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 6476 | . . . . . . 7 class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 5086 | . . . . . 6 wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wb 206 | . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 3047 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 3047 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 395 | . 2 wff (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 206 | 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isoeq1 7246 isoeq2 7247 isoeq3 7248 isoeq4 7249 isoeq5 7250 nfiso 7251 isof1o 7252 isof1oidb 7253 isof1oopb 7254 isorel 7255 soisores 7256 soisoi 7257 isoid 7258 isocnv 7259 isocnv2 7260 isocnv3 7261 isores2 7262 isores3 7264 isotr 7265 isoini2 7268 f1oiso 7280 f1owe 7282 smoiso2 8284 alephiso 9984 compssiso 10260 negiso 12097 om2uzisoi 13856 icopnfhmeo 24863 reefiso 26380 logltb 26531 onsiso 28200 om2noseqiso 28227 isoun 32675 mgcf1o 32976 xrmulc1cn 33935 sticksstones3 42181 wepwsolem 43075 alephiso2 43591 iso0 44340 fourierdlem54 46198 rrx2plordisom 48755 |
| Copyright terms: Public domain | W3C validator |