| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankrelp | Structured version Visualization version GIF version | ||
| Description: The rank function preserves ∈. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| rankrelp | ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9765 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | rankelb 9795 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝑦 → (rank‘𝑥) ∈ (rank‘𝑦))) | |
| 3 | epel 5549 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 4 | fvex 6878 | . . . . . 6 ⊢ (rank‘𝑦) ∈ V | |
| 5 | 4 | epeli 5548 | . . . . 5 ⊢ ((rank‘𝑥) E (rank‘𝑦) ↔ (rank‘𝑥) ∈ (rank‘𝑦)) |
| 6 | 2, 3, 5 | 3imtr4g 296 | . . . 4 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))) |
| 7 | 6 | rgen 3048 | . . 3 ⊢ ∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 8 | 7 | rgenw 3050 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 9 | df-relp 44905 | . 2 ⊢ (rank RelPres E , E (∪ (𝑅1 “ On), On) ↔ (rank:∪ (𝑅1 “ On)⟶On ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)))) | |
| 10 | 1, 8, 9 | mpbir2an 711 | 1 ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3046 ∪ cuni 4879 class class class wbr 5115 E cep 5545 “ cima 5649 Oncon0 6340 ⟶wf 6515 ‘cfv 6519 𝑅1cr1 9733 rankcrnk 9734 RelPres wrelp 44904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-r1 9735 df-rank 9736 df-relp 44905 |
| This theorem is referenced by: wffr 44923 |
| Copyright terms: Public domain | W3C validator |