| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankrelp | Structured version Visualization version GIF version | ||
| Description: The rank function preserves ∈. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| rankrelp | ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9816 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | rankelb 9846 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝑦 → (rank‘𝑥) ∈ (rank‘𝑦))) | |
| 3 | epel 5567 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 4 | fvex 6899 | . . . . . 6 ⊢ (rank‘𝑦) ∈ V | |
| 5 | 4 | epeli 5566 | . . . . 5 ⊢ ((rank‘𝑥) E (rank‘𝑦) ↔ (rank‘𝑥) ∈ (rank‘𝑦)) |
| 6 | 2, 3, 5 | 3imtr4g 296 | . . . 4 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))) |
| 7 | 6 | rgen 3052 | . . 3 ⊢ ∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 8 | 7 | rgenw 3054 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 9 | df-relp 44921 | . 2 ⊢ (rank RelPres E , E (∪ (𝑅1 “ On), On) ↔ (rank:∪ (𝑅1 “ On)⟶On ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)))) | |
| 10 | 1, 8, 9 | mpbir2an 711 | 1 ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 ∪ cuni 4887 class class class wbr 5123 E cep 5563 “ cima 5668 Oncon0 6363 ⟶wf 6537 ‘cfv 6541 𝑅1cr1 9784 rankcrnk 9785 RelPres wrelp 44920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-r1 9786 df-rank 9787 df-relp 44921 |
| This theorem is referenced by: wffr 44935 |
| Copyright terms: Public domain | W3C validator |