Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankrelp Structured version   Visualization version   GIF version

Theorem rankrelp 45077
Description: The rank function preserves . (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
rankrelp rank RelPres E , E ( (𝑅1 “ On), On)

Proof of Theorem rankrelp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankf 9694 . 2 rank: (𝑅1 “ On)⟶On
2 rankelb 9724 . . . . 5 (𝑦 (𝑅1 “ On) → (𝑥𝑦 → (rank‘𝑥) ∈ (rank‘𝑦)))
3 epel 5522 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
4 fvex 6841 . . . . . 6 (rank‘𝑦) ∈ V
54epeli 5521 . . . . 5 ((rank‘𝑥) E (rank‘𝑦) ↔ (rank‘𝑥) ∈ (rank‘𝑦))
62, 3, 53imtr4g 296 . . . 4 (𝑦 (𝑅1 “ On) → (𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)))
76rgen 3050 . . 3 𝑦 (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))
87rgenw 3052 . 2 𝑥 (𝑅1 “ On)∀𝑦 (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))
9 df-relp 45060 . 2 (rank RelPres E , E ( (𝑅1 “ On), On) ↔ (rank: (𝑅1 “ On)⟶On ∧ ∀𝑥 (𝑅1 “ On)∀𝑦 (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))))
101, 8, 9mpbir2an 711 1 rank RelPres E , E ( (𝑅1 “ On), On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wral 3048   cuni 4858   class class class wbr 5093   E cep 5518  cima 5622  Oncon0 6311  wf 6482  cfv 6486  𝑅1cr1 9662  rankcrnk 9663   RelPres wrelp 45059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9664  df-rank 9665  df-relp 45060
This theorem is referenced by:  wffr  45078
  Copyright terms: Public domain W3C validator