| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankrelp | Structured version Visualization version GIF version | ||
| Description: The rank function preserves ∈. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| rankrelp | ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9694 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | rankelb 9724 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝑦 → (rank‘𝑥) ∈ (rank‘𝑦))) | |
| 3 | epel 5522 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 4 | fvex 6841 | . . . . . 6 ⊢ (rank‘𝑦) ∈ V | |
| 5 | 4 | epeli 5521 | . . . . 5 ⊢ ((rank‘𝑥) E (rank‘𝑦) ↔ (rank‘𝑥) ∈ (rank‘𝑦)) |
| 6 | 2, 3, 5 | 3imtr4g 296 | . . . 4 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → (𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦))) |
| 7 | 6 | rgen 3050 | . . 3 ⊢ ∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 8 | 7 | rgenw 3052 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)) |
| 9 | df-relp 45060 | . 2 ⊢ (rank RelPres E , E (∪ (𝑅1 “ On), On) ↔ (rank:∪ (𝑅1 “ On)⟶On ∧ ∀𝑥 ∈ ∪ (𝑅1 “ On)∀𝑦 ∈ ∪ (𝑅1 “ On)(𝑥 E 𝑦 → (rank‘𝑥) E (rank‘𝑦)))) | |
| 10 | 1, 8, 9 | mpbir2an 711 | 1 ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 ∪ cuni 4858 class class class wbr 5093 E cep 5518 “ cima 5622 Oncon0 6311 ⟶wf 6482 ‘cfv 6486 𝑅1cr1 9662 rankcrnk 9663 RelPres wrelp 45059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9664 df-rank 9665 df-relp 45060 |
| This theorem is referenced by: wffr 45078 |
| Copyright terms: Public domain | W3C validator |