Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpeq5 Structured version   Visualization version   GIF version

Theorem relpeq5 44958
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpeq5 (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))

Proof of Theorem relpeq5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq3 6726 . . 3 (𝐵 = 𝐶 → (𝐻:𝐴𝐵𝐻:𝐴𝐶))
21anbi1d 631 . 2 (𝐵 = 𝐶 → ((𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))))
3 df-relp 44953 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
4 df-relp 44953 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶) ↔ (𝐻:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
52, 3, 43bitr4g 314 1 (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wral 3061   class class class wbr 5151  wf 6565  cfv 6569   RelPres wrelp 44952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2729  df-ss 3983  df-f 6573  df-relp 44953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator