| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpeq5 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpeq5 | ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq3 6676 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐻:𝐴⟶𝐵 ↔ 𝐻:𝐴⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐵 = 𝐶 → ((𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
| 3 | df-relp 44905 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 4 | df-relp 44905 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶) ↔ (𝐻:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3046 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 RelPres wrelp 44904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3939 df-f 6523 df-relp 44905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |