Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpeq5 Structured version   Visualization version   GIF version

Theorem relpeq5 44910
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpeq5 (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))

Proof of Theorem relpeq5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq3 6676 . . 3 (𝐵 = 𝐶 → (𝐻:𝐴𝐵𝐻:𝐴𝐶))
21anbi1d 631 . 2 (𝐵 = 𝐶 → ((𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))))
3 df-relp 44905 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
4 df-relp 44905 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶) ↔ (𝐻:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
52, 3, 43bitr4g 314 1 (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3046   class class class wbr 5115  wf 6515  cfv 6519   RelPres wrelp 44904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3939  df-f 6523  df-relp 44905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator