| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpeq1 | ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6696 | . . 3 ⊢ (𝐻 = 𝐺 → (𝐻:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 2 | fveq1 6885 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑥) = (𝐺‘𝑥)) | |
| 3 | fveq1 6885 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑦) = (𝐺‘𝑦)) | |
| 4 | 2, 3 | breq12d 5136 | . . . . 5 ⊢ (𝐻 = 𝐺 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
| 5 | 4 | imbi2d 340 | . . . 4 ⊢ (𝐻 = 𝐺 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 → (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
| 6 | 5 | 2ralbidv 3208 | . . 3 ⊢ (𝐻 = 𝐺 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
| 7 | 1, 6 | anbi12d 632 | . 2 ⊢ (𝐻 = 𝐺 → ((𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐺:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐺‘𝑥)𝑆(𝐺‘𝑦))))) |
| 8 | df-relp 44921 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 9 | df-relp 44921 | . 2 ⊢ (𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐺:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3050 class class class wbr 5123 ⟶wf 6537 ‘cfv 6541 RelPres wrelp 44920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-relp 44921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |