Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpeq1 Structured version   Visualization version   GIF version

Theorem relpeq1 44976
Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpeq1 (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵)))

Proof of Theorem relpeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6629 . . 3 (𝐻 = 𝐺 → (𝐻:𝐴𝐵𝐺:𝐴𝐵))
2 fveq1 6821 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑥) = (𝐺𝑥))
3 fveq1 6821 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑦) = (𝐺𝑦))
42, 3breq12d 5104 . . . . 5 (𝐻 = 𝐺 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺𝑥)𝑆(𝐺𝑦)))
54imbi2d 340 . . . 4 (𝐻 = 𝐺 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 → (𝐺𝑥)𝑆(𝐺𝑦))))
652ralbidv 3196 . . 3 (𝐻 = 𝐺 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐺𝑥)𝑆(𝐺𝑦))))
71, 6anbi12d 632 . 2 (𝐻 = 𝐺 → ((𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐺:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐺𝑥)𝑆(𝐺𝑦)))))
8 df-relp 44975 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
9 df-relp 44975 . 2 (𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐺:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐺𝑥)𝑆(𝐺𝑦))))
107, 8, 93bitr4g 314 1 (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wral 3047   class class class wbr 5091  wf 6477  cfv 6481   RelPres wrelp 44974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-relp 44975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator