| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s4eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
| Ref | Expression |
|---|---|
| s4eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 4 | 1, 2, 3 | s3eqd 14830 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| 5 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
| 6 | 5 | s1eqd 14566 | . . 3 ⊢ (𝜑 → 〈“𝐷”〉 = 〈“𝑄”〉) |
| 7 | 4, 6 | oveq12d 7405 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉)) |
| 8 | df-s4 14816 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
| 9 | df-s4 14816 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄”〉 = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉) | |
| 10 | 7, 8, 9 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7387 ++ cconcat 14535 〈“cs1 14560 〈“cs3 14808 〈“cs4 14809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-s1 14561 df-s2 14814 df-s3 14815 df-s4 14816 |
| This theorem is referenced by: s5eqd 14832 |
| Copyright terms: Public domain | W3C validator |