![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s4eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
Ref | Expression |
---|---|
s4eqd | ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | 1, 2, 3 | s3eqd 14841 | . . 3 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) |
5 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
6 | 5 | s1eqd 14577 | . . 3 ⊢ (𝜑 → ⟨“𝐷”⟩ = ⟨“𝑄”⟩) |
7 | 4, 6 | oveq12d 7432 | . 2 ⊢ (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩)) |
8 | df-s4 14827 | . 2 ⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) | |
9 | df-s4 14827 | . 2 ⊢ ⟨“𝑁𝑂𝑃𝑄”⟩ = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩) | |
10 | 7, 8, 9 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 (class class class)co 7414 ++ cconcat 14546 ⟨“cs1 14571 ⟨“cs3 14819 ⟨“cs4 14820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-s1 14572 df-s2 14825 df-s3 14826 df-s4 14827 |
This theorem is referenced by: s5eqd 14843 |
Copyright terms: Public domain | W3C validator |