Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s4eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
Ref | Expression |
---|---|
s4eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | 1, 2, 3 | s3eqd 14577 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
5 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
6 | 5 | s1eqd 14306 | . . 3 ⊢ (𝜑 → 〈“𝐷”〉 = 〈“𝑄”〉) |
7 | 4, 6 | oveq12d 7293 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉)) |
8 | df-s4 14563 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
9 | df-s4 14563 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄”〉 = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉) | |
10 | 7, 8, 9 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7275 ++ cconcat 14273 〈“cs1 14300 〈“cs3 14555 〈“cs4 14556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-s1 14301 df-s2 14561 df-s3 14562 df-s4 14563 |
This theorem is referenced by: s5eqd 14579 |
Copyright terms: Public domain | W3C validator |