![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s4eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
Ref | Expression |
---|---|
s4eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | 1, 2, 3 | s3eqd 14873 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
5 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
6 | 5 | s1eqd 14609 | . . 3 ⊢ (𝜑 → 〈“𝐷”〉 = 〈“𝑄”〉) |
7 | 4, 6 | oveq12d 7442 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉)) |
8 | df-s4 14859 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
9 | df-s4 14859 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄”〉 = (〈“𝑁𝑂𝑃”〉 ++ 〈“𝑄”〉) | |
10 | 7, 8, 9 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 (class class class)co 7424 ++ cconcat 14578 〈“cs1 14603 〈“cs3 14851 〈“cs4 14852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 df-ov 7427 df-s1 14604 df-s2 14857 df-s3 14858 df-s4 14859 |
This theorem is referenced by: s5eqd 14875 |
Copyright terms: Public domain | W3C validator |