MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4eqd Structured version   Visualization version   GIF version

Theorem s4eqd 14506
Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
Assertion
Ref Expression
s4eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)

Proof of Theorem s4eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
41, 2, 3s3eqd 14505 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
5 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
65s1eqd 14234 . . 3 (𝜑 → ⟨“𝐷”⟩ = ⟨“𝑄”⟩)
74, 6oveq12d 7273 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩))
8 df-s4 14491 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
9 df-s4 14491 . 2 ⟨“𝑁𝑂𝑃𝑄”⟩ = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩)
107, 8, 93eqtr4g 2804 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7255   ++ cconcat 14201  ⟨“cs1 14228  ⟨“cs3 14483  ⟨“cs4 14484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-s1 14229  df-s2 14489  df-s3 14490  df-s4 14491
This theorem is referenced by:  s5eqd  14507
  Copyright terms: Public domain W3C validator