![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version |
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s3 | ⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cs3 14793 | . 2 class ⟨“𝐴𝐵𝐶”⟩ |
5 | 1, 2 | cs2 14792 | . . 3 class ⟨“𝐴𝐵”⟩ |
6 | 3 | cs1 14545 | . . 3 class ⟨“𝐶”⟩ |
7 | cconcat 14520 | . . 3 class ++ | |
8 | 5, 6, 7 | co 7409 | . 2 class (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) |
9 | 4, 8 | wceq 1542 | 1 wff ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: s3eqd 14815 s3cld 14823 s3cli 14832 s3fv0 14842 s3fv1 14843 s3fv2 14844 s3len 14845 s3tpop 14860 s4prop 14861 s3co 14872 s1s2 14874 s1s3 14875 s2s2 14880 s4s3 14882 s3s4 14884 s3eqs2s1eq 14889 repsw3 14902 2pthon3v 29197 konigsberglem1 29505 konigsberglem2 29506 konigsberglem3 29507 |
Copyright terms: Public domain | W3C validator |