MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s3 Structured version   Visualization version   GIF version

Definition df-s3 14822
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s3 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)

Detailed syntax breakdown of Definition df-s3
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cs3 14815 . 2 class ⟨“𝐴𝐵𝐶”⟩
51, 2cs2 14814 . . 3 class ⟨“𝐴𝐵”⟩
63cs1 14567 . . 3 class ⟨“𝐶”⟩
7 cconcat 14542 . . 3 class ++
85, 6, 7co 7390 . 2 class (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
94, 8wceq 1540 1 wff ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s3eqd  14837  s3cld  14845  s3cli  14854  s3fv0  14864  s3fv1  14865  s3fv2  14866  s3len  14867  s3tpop  14882  s4prop  14883  s3co  14894  s1s2  14896  s1s3  14897  s2s2  14902  s4s3  14904  s3s4  14906  s3eqs2s1eq  14911  repsw3  14924  s3rn  14937  2pthon3v  29880  konigsberglem1  30188  konigsberglem2  30189  konigsberglem3  30190
  Copyright terms: Public domain W3C validator