MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s3 Structured version   Visualization version   GIF version

Definition df-s3 14807
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s3 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)

Detailed syntax breakdown of Definition df-s3
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cs3 14800 . 2 class ⟨“𝐴𝐵𝐶”⟩
51, 2cs2 14799 . . 3 class ⟨“𝐴𝐵”⟩
63cs1 14552 . . 3 class ⟨“𝐶”⟩
7 cconcat 14527 . . 3 class ++
85, 6, 7co 7412 . 2 class (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
94, 8wceq 1540 1 wff ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s3eqd  14822  s3cld  14830  s3cli  14839  s3fv0  14849  s3fv1  14850  s3fv2  14851  s3len  14852  s3tpop  14867  s4prop  14868  s3co  14879  s1s2  14881  s1s3  14882  s2s2  14887  s4s3  14889  s3s4  14891  s3eqs2s1eq  14896  repsw3  14909  2pthon3v  29632  konigsberglem1  29940  konigsberglem2  29941  konigsberglem3  29942
  Copyright terms: Public domain W3C validator