![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version |
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cs3 14800 | . 2 class 〈“𝐴𝐵𝐶”〉 |
5 | 1, 2 | cs2 14799 | . . 3 class 〈“𝐴𝐵”〉 |
6 | 3 | cs1 14552 | . . 3 class 〈“𝐶”〉 |
7 | cconcat 14527 | . . 3 class ++ | |
8 | 5, 6, 7 | co 7412 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
9 | 4, 8 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s3eqd 14822 s3cld 14830 s3cli 14839 s3fv0 14849 s3fv1 14850 s3fv2 14851 s3len 14852 s3tpop 14867 s4prop 14868 s3co 14879 s1s2 14881 s1s3 14882 s2s2 14887 s4s3 14889 s3s4 14891 s3eqs2s1eq 14896 repsw3 14909 2pthon3v 29632 konigsberglem1 29940 konigsberglem2 29941 konigsberglem3 29942 |
Copyright terms: Public domain | W3C validator |