| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14815 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14814 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14567 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14542 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7390 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14837 s3cld 14845 s3cli 14854 s3fv0 14864 s3fv1 14865 s3fv2 14866 s3len 14867 s3tpop 14882 s4prop 14883 s3co 14894 s1s2 14896 s1s3 14897 s2s2 14902 s4s3 14904 s3s4 14906 s3eqs2s1eq 14911 repsw3 14924 s3rn 14937 2pthon3v 29880 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 |
| Copyright terms: Public domain | W3C validator |