| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14751 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14750 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14505 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14479 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7352 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1541 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14773 s3cld 14781 s3cli 14790 s3fv0 14800 s3fv1 14801 s3fv2 14802 s3len 14803 s3tpop 14818 s4prop 14819 s3co 14830 s1s2 14832 s1s3 14833 s2s2 14838 s4s3 14840 s3s4 14842 s3eqs2s1eq 14847 repsw3 14860 s3rn 14873 2pthon3v 29923 konigsberglem1 30234 konigsberglem2 30235 konigsberglem3 30236 nthrucw 47009 |
| Copyright terms: Public domain | W3C validator |