Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version |
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cs3 14483 | . 2 class 〈“𝐴𝐵𝐶”〉 |
5 | 1, 2 | cs2 14482 | . . 3 class 〈“𝐴𝐵”〉 |
6 | 3 | cs1 14228 | . . 3 class 〈“𝐶”〉 |
7 | cconcat 14201 | . . 3 class ++ | |
8 | 5, 6, 7 | co 7255 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
9 | 4, 8 | wceq 1539 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s3eqd 14505 s3cld 14513 s3cli 14522 s3fv0 14532 s3fv1 14533 s3fv2 14534 s3len 14535 s3tpop 14550 s4prop 14551 s3co 14562 s1s2 14564 s1s3 14565 s2s2 14570 s4s3 14572 s3s4 14574 s3eqs2s1eq 14579 repsw3 14592 2pthon3v 28209 konigsberglem1 28517 konigsberglem2 28518 konigsberglem3 28519 |
Copyright terms: Public domain | W3C validator |