![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version |
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cs3 14877 | . 2 class 〈“𝐴𝐵𝐶”〉 |
5 | 1, 2 | cs2 14876 | . . 3 class 〈“𝐴𝐵”〉 |
6 | 3 | cs1 14629 | . . 3 class 〈“𝐶”〉 |
7 | cconcat 14604 | . . 3 class ++ | |
8 | 5, 6, 7 | co 7430 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
9 | 4, 8 | wceq 1536 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s3eqd 14899 s3cld 14907 s3cli 14916 s3fv0 14926 s3fv1 14927 s3fv2 14928 s3len 14929 s3tpop 14944 s4prop 14945 s3co 14956 s1s2 14958 s1s3 14959 s2s2 14964 s4s3 14966 s3s4 14968 s3eqs2s1eq 14973 repsw3 14986 s3rn 14999 2pthon3v 29972 konigsberglem1 30280 konigsberglem2 30281 konigsberglem3 30282 |
Copyright terms: Public domain | W3C validator |