| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14746 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14745 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14500 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14474 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7346 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1541 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14768 s3cld 14776 s3cli 14785 s3fv0 14795 s3fv1 14796 s3fv2 14797 s3len 14798 s3tpop 14813 s4prop 14814 s3co 14825 s1s2 14827 s1s3 14828 s2s2 14833 s4s3 14835 s3s4 14837 s3eqs2s1eq 14842 repsw3 14855 s3rn 14868 2pthon3v 29919 konigsberglem1 30227 konigsberglem2 30228 konigsberglem3 30229 |
| Copyright terms: Public domain | W3C validator |