| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14808 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14807 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14560 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14535 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7387 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14830 s3cld 14838 s3cli 14847 s3fv0 14857 s3fv1 14858 s3fv2 14859 s3len 14860 s3tpop 14875 s4prop 14876 s3co 14887 s1s2 14889 s1s3 14890 s2s2 14895 s4s3 14897 s3s4 14899 s3eqs2s1eq 14904 repsw3 14917 s3rn 14930 2pthon3v 29873 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 |
| Copyright terms: Public domain | W3C validator |