![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version |
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cs3 14891 | . 2 class 〈“𝐴𝐵𝐶”〉 |
5 | 1, 2 | cs2 14890 | . . 3 class 〈“𝐴𝐵”〉 |
6 | 3 | cs1 14643 | . . 3 class 〈“𝐶”〉 |
7 | cconcat 14618 | . . 3 class ++ | |
8 | 5, 6, 7 | co 7448 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
9 | 4, 8 | wceq 1537 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s3eqd 14913 s3cld 14921 s3cli 14930 s3fv0 14940 s3fv1 14941 s3fv2 14942 s3len 14943 s3tpop 14958 s4prop 14959 s3co 14970 s1s2 14972 s1s3 14973 s2s2 14978 s4s3 14980 s3s4 14982 s3eqs2s1eq 14987 repsw3 15000 s3rn 15013 2pthon3v 29976 konigsberglem1 30284 konigsberglem2 30285 konigsberglem3 30286 |
Copyright terms: Public domain | W3C validator |