| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14859 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14858 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14611 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14586 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7403 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14881 s3cld 14889 s3cli 14898 s3fv0 14908 s3fv1 14909 s3fv2 14910 s3len 14911 s3tpop 14926 s4prop 14927 s3co 14938 s1s2 14940 s1s3 14941 s2s2 14946 s4s3 14948 s3s4 14950 s3eqs2s1eq 14955 repsw3 14968 s3rn 14981 2pthon3v 29871 konigsberglem1 30179 konigsberglem2 30180 konigsberglem3 30181 |
| Copyright terms: Public domain | W3C validator |