| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s3 | Structured version Visualization version GIF version | ||
| Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s3 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cs3 14767 | . 2 class 〈“𝐴𝐵𝐶”〉 |
| 5 | 1, 2 | cs2 14766 | . . 3 class 〈“𝐴𝐵”〉 |
| 6 | 3 | cs1 14520 | . . 3 class 〈“𝐶”〉 |
| 7 | cconcat 14495 | . . 3 class ++ | |
| 8 | 5, 6, 7 | co 7353 | . 2 class (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| 9 | 4, 8 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s3eqd 14789 s3cld 14797 s3cli 14806 s3fv0 14816 s3fv1 14817 s3fv2 14818 s3len 14819 s3tpop 14834 s4prop 14835 s3co 14846 s1s2 14848 s1s3 14849 s2s2 14854 s4s3 14856 s3s4 14858 s3eqs2s1eq 14863 repsw3 14876 s3rn 14889 2pthon3v 29906 konigsberglem1 30214 konigsberglem2 30215 konigsberglem3 30216 |
| Copyright terms: Public domain | W3C validator |