MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s3 Structured version   Visualization version   GIF version

Definition df-s3 14884
Description: Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s3 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)

Detailed syntax breakdown of Definition df-s3
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cs3 14877 . 2 class ⟨“𝐴𝐵𝐶”⟩
51, 2cs2 14876 . . 3 class ⟨“𝐴𝐵”⟩
63cs1 14629 . . 3 class ⟨“𝐶”⟩
7 cconcat 14604 . . 3 class ++
85, 6, 7co 7430 . 2 class (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
94, 8wceq 1536 1 wff ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s3eqd  14899  s3cld  14907  s3cli  14916  s3fv0  14926  s3fv1  14927  s3fv2  14928  s3len  14929  s3tpop  14944  s4prop  14945  s3co  14956  s1s2  14958  s1s3  14959  s2s2  14964  s4s3  14966  s3s4  14968  s3eqs2s1eq  14973  repsw3  14986  s3rn  14999  2pthon3v  29972  konigsberglem1  30280  konigsberglem2  30281  konigsberglem3  30282
  Copyright terms: Public domain W3C validator