Step | Hyp | Ref
| Expression |
1 | | df-s4 14797 |
. 2
⊢
⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
2 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐴 ∈ 𝑆) |
4 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) |
5 | 4 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐵 ∈ 𝑆) |
6 | | simpl 483 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝐶 ∈ 𝑆) |
7 | 6 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐶 ∈ 𝑆) |
8 | 3, 5, 7 | s3cld 14819 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆) |
9 | | simpr 485 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝐷 ∈ 𝑆) |
10 | 9 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐷 ∈ 𝑆) |
11 | | cats1un 14667 |
. . . . 5
⊢
((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆 ∧ 𝐷 ∈ 𝑆) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) =
(⟨“𝐴𝐵𝐶”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) |
12 | 8, 10, 11 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) =
(⟨“𝐴𝐵𝐶”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) |
13 | | df-s3 14796 |
. . . . . . 7
⊢
⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) |
14 | | s2cl 14825 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆) |
15 | 14 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆) |
16 | | cats1un 14667 |
. . . . . . . 8
⊢
((⟨“𝐴𝐵”⟩ ∈ Word 𝑆 ∧ 𝐶 ∈ 𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) =
(⟨“𝐴𝐵”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩})) |
17 | 15, 7, 16 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) =
(⟨“𝐴𝐵”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩})) |
18 | 13, 17 | eqtrid 2784 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩})) |
19 | | s2prop 14854 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) |
20 | 19 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) |
21 | 20 | uneq1d 4161 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩})) |
22 | 18, 21 | eqtrd 2772 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩})) |
23 | 22 | uneq1d 4161 |
. . . 4
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) |
24 | 12, 23 | eqtrd 2772 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (({⟨0,
𝐴⟩, ⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) |
25 | | unass 4165 |
. . . 4
⊢
(({⟨0, 𝐴⟩,
⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) |
26 | 25 | a1i 11 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))) |
27 | | df-pr 4630 |
. . . . 5
⊢
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩,
⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} =
({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) |
28 | | s2len 14836 |
. . . . . . . 8
⊢
(♯‘⟨“𝐴𝐵”⟩) = 2 |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (♯‘⟨“𝐴𝐵”⟩) = 2) |
30 | 29 | opeq1d 4878 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) →
⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶⟩) |
31 | | s3len 14841 |
. . . . . . . 8
⊢
(♯‘⟨“𝐴𝐵𝐶”⟩) = 3 |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) |
33 | 32 | opeq1d 4878 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) →
⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩ = ⟨3, 𝐷⟩) |
34 | 30, 33 | preq12d 4744 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) →
{⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩,
⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) |
35 | 27, 34 | eqtr3id 2786 |
. . . 4
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) →
({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) |
36 | 35 | uneq2d 4162 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪
({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪
{⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})) |
37 | 24, 26, 36 | 3eqtrd 2776 |
. 2
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = ({⟨0,
𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})) |
38 | 1, 37 | eqtrid 2784 |
1
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})) |