MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4prop Structured version   Visualization version   GIF version

Theorem s4prop 14682
Description: A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4prop (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))

Proof of Theorem s4prop
StepHypRef Expression
1 df-s4 14622 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
2 simpl 483 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
32adantr 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐴𝑆)
4 simpr 485 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
54adantr 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐵𝑆)
6 simpl 483 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → 𝐶𝑆)
76adantl 482 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐶𝑆)
83, 5, 7s3cld 14644 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆)
9 simpr 485 . . . . . 6 ((𝐶𝑆𝐷𝑆) → 𝐷𝑆)
109adantl 482 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐷𝑆)
11 cats1un 14493 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆𝐷𝑆) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
128, 10, 11syl2anc 584 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
13 df-s3 14621 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
14 s2cl 14650 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
1514adantr 481 . . . . . . . 8 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
16 cats1un 14493 . . . . . . . 8 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1715, 7, 16syl2anc 584 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1813, 17eqtrid 2787 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
19 s2prop 14679 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2019adantr 481 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2120uneq1d 4101 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2218, 21eqtrd 2775 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2322uneq1d 4101 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2412, 23eqtrd 2775 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
25 unass 4105 . . . 4 (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2625a1i 11 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})))
27 df-pr 4567 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})
28 s2len 14661 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
2928a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵”⟩) = 2)
3029opeq1d 4814 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶⟩)
31 s3len 14666 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3231a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
3332opeq1d 4814 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩ = ⟨3, 𝐷⟩)
3430, 33preq12d 4680 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3527, 34eqtr3id 2789 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3635uneq2d 4102 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
3724, 26, 363eqtrd 2779 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
381, 37eqtrid 2787 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1538  wcel 2103  cun 3889  {csn 4564  {cpr 4566  cop 4570  cfv 6458  (class class class)co 7308  0cc0 10931  1c1 10932  2c2 12088  3c3 12089  chash 14104  Word cword 14276   ++ cconcat 14332  ⟨“cs1 14359  ⟨“cs2 14613  ⟨“cs3 14614  ⟨“cs4 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-rep 5217  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7621  ax-cnex 10987  ax-resscn 10988  ax-1cn 10989  ax-icn 10990  ax-addcl 10991  ax-addrcl 10992  ax-mulcl 10993  ax-mulrcl 10994  ax-mulcom 10995  ax-addass 10996  ax-mulass 10997  ax-distr 10998  ax-i2m1 10999  ax-1ne0 11000  ax-1rid 11001  ax-rnegex 11002  ax-rrecex 11003  ax-cnre 11004  ax-pre-lttri 11005  ax-pre-lttrn 11006  ax-pre-ltadd 11007  ax-pre-mulgt0 11008
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2885  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3340  df-rab 3357  df-v 3438  df-sbc 3721  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4844  df-int 4886  df-iun 4932  df-br 5081  df-opab 5143  df-mpt 5164  df-tr 5198  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7265  df-ov 7311  df-oprab 7312  df-mpo 7313  df-om 7749  df-1st 7867  df-2nd 7868  df-frecs 8132  df-wrecs 8163  df-recs 8237  df-rdg 8276  df-1o 8332  df-er 8534  df-en 8770  df-dom 8771  df-sdom 8772  df-fin 8773  df-card 9755  df-pnf 11071  df-mnf 11072  df-xr 11073  df-ltxr 11074  df-le 11075  df-sub 11267  df-neg 11268  df-nn 12034  df-2 12096  df-3 12097  df-n0 12294  df-z 12380  df-uz 12643  df-fz 13300  df-fzo 13443  df-hash 14105  df-word 14277  df-concat 14333  df-s1 14360  df-s2 14620  df-s3 14621  df-s4 14622
This theorem is referenced by:  funcnvs4  14687  s4f1o  14690  s4dom  14691
  Copyright terms: Public domain W3C validator