MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4prop Structured version   Visualization version   GIF version

Theorem s4prop 14835
Description: A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4prop (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))

Proof of Theorem s4prop
StepHypRef Expression
1 df-s4 14775 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
2 simpl 482 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
32adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐴𝑆)
4 simpr 484 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
54adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐵𝑆)
6 simpl 482 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → 𝐶𝑆)
76adantl 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐶𝑆)
83, 5, 7s3cld 14797 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆)
9 simpr 484 . . . . . 6 ((𝐶𝑆𝐷𝑆) → 𝐷𝑆)
109adantl 481 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐷𝑆)
11 cats1un 14645 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆𝐷𝑆) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
128, 10, 11syl2anc 584 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
13 df-s3 14774 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
14 s2cl 14803 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
1514adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
16 cats1un 14645 . . . . . . . 8 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1715, 7, 16syl2anc 584 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1813, 17eqtrid 2776 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
19 s2prop 14832 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2019adantr 480 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2120uneq1d 4120 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2218, 21eqtrd 2764 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2322uneq1d 4120 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2412, 23eqtrd 2764 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
25 unass 4125 . . . 4 (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2625a1i 11 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})))
27 df-pr 4582 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})
28 s2len 14814 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
2928a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵”⟩) = 2)
3029opeq1d 4833 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶⟩)
31 s3len 14819 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3231a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
3332opeq1d 4833 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩ = ⟨3, 𝐷⟩)
3430, 33preq12d 4695 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3527, 34eqtr3id 2778 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3635uneq2d 4121 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
3724, 26, 363eqtrd 2768 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
381, 37eqtrid 2776 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3903  {csn 4579  {cpr 4581  cop 4585  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  2c2 12201  3c3 12202  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  ⟨“cs2 14766  ⟨“cs3 14767  ⟨“cs4 14768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775
This theorem is referenced by:  funcnvs4  14840  s4f1o  14843  s4dom  14844
  Copyright terms: Public domain W3C validator