MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4prop Structured version   Visualization version   GIF version

Theorem s4prop 14894
Description: A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4prop (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))

Proof of Theorem s4prop
StepHypRef Expression
1 df-s4 14834 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
2 simpl 482 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
32adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐴𝑆)
4 simpr 484 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
54adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐵𝑆)
6 simpl 482 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → 𝐶𝑆)
76adantl 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐶𝑆)
83, 5, 7s3cld 14856 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆)
9 simpr 484 . . . . . 6 ((𝐶𝑆𝐷𝑆) → 𝐷𝑆)
109adantl 481 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐷𝑆)
11 cats1un 14704 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆𝐷𝑆) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
128, 10, 11syl2anc 583 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
13 df-s3 14833 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
14 s2cl 14862 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
1514adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
16 cats1un 14704 . . . . . . . 8 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1715, 7, 16syl2anc 583 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1813, 17eqtrid 2780 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
19 s2prop 14891 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2019adantr 480 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2120uneq1d 4161 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2218, 21eqtrd 2768 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2322uneq1d 4161 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2412, 23eqtrd 2768 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
25 unass 4166 . . . 4 (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2625a1i 11 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})))
27 df-pr 4632 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})
28 s2len 14873 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
2928a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵”⟩) = 2)
3029opeq1d 4880 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶⟩)
31 s3len 14878 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3231a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
3332opeq1d 4880 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩ = ⟨3, 𝐷⟩)
3430, 33preq12d 4746 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3527, 34eqtr3id 2782 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3635uneq2d 4162 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
3724, 26, 363eqtrd 2772 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
381, 37eqtrid 2780 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cun 3945  {csn 4629  {cpr 4631  cop 4635  cfv 6548  (class class class)co 7420  0cc0 11139  1c1 11140  2c2 12298  3c3 12299  chash 14322  Word cword 14497   ++ cconcat 14553  ⟨“cs1 14578  ⟨“cs2 14825  ⟨“cs3 14826  ⟨“cs4 14827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-concat 14554  df-s1 14579  df-s2 14832  df-s3 14833  df-s4 14834
This theorem is referenced by:  funcnvs4  14899  s4f1o  14902  s4dom  14903
  Copyright terms: Public domain W3C validator