MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgr4 Structured version   Visualization version   GIF version

Theorem tgcgr4 26034
Description: Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgr4.a (𝜑𝐴𝑃)
tgcgr4.b (𝜑𝐵𝑃)
tgcgr4.c (𝜑𝐶𝑃)
tgcgr4.d (𝜑𝐷𝑃)
tgcgr4.w (𝜑𝑊𝑃)
tgcgr4.x (𝜑𝑋𝑃)
tgcgr4.y (𝜑𝑌𝑃)
tgcgr4.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcgr4 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))

Proof of Theorem tgcgr4
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.p . . 3 𝑃 = (Base‘𝐺)
2 tgcgrxfr.m . . 3 = (dist‘𝐺)
3 tgcgrxfr.r . . 3 = (cgrG‘𝐺)
4 tgcgrxfr.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 fzo0ssnn0 12939 . . . . 5 (0..^4) ⊆ ℕ0
6 nn0ssre 11717 . . . . 5 0 ⊆ ℝ
75, 6sstri 3869 . . . 4 (0..^4) ⊆ ℝ
87a1i 11 . . 3 (𝜑 → (0..^4) ⊆ ℝ)
9 tgcgr4.a . . . . . 6 (𝜑𝐴𝑃)
10 tgcgr4.b . . . . . 6 (𝜑𝐵𝑃)
11 tgcgr4.c . . . . . 6 (𝜑𝐶𝑃)
12 tgcgr4.d . . . . . 6 (𝜑𝐷𝑃)
139, 10, 11, 12s4cld 14103 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑃)
14 wrdf 13683 . . . . 5 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃)
1513, 14syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃)
16 s4len 14129 . . . . . 6 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
1716oveq2i 6993 . . . . 5 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩)) = (0..^4)
1817feq2i 6341 . . . 4 (⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶𝑃)
1915, 18sylib 210 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶𝑃)
20 tgcgr4.w . . . . . 6 (𝜑𝑊𝑃)
21 tgcgr4.x . . . . . 6 (𝜑𝑋𝑃)
22 tgcgr4.y . . . . . 6 (𝜑𝑌𝑃)
23 tgcgr4.z . . . . . 6 (𝜑𝑍𝑃)
2420, 21, 22, 23s4cld 14103 . . . . 5 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩ ∈ Word 𝑃)
25 wrdf 13683 . . . . 5 (⟨“𝑊𝑋𝑌𝑍”⟩ ∈ Word 𝑃 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃)
2624, 25syl 17 . . . 4 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃)
27 s4len 14129 . . . . . 6 (♯‘⟨“𝑊𝑋𝑌𝑍”⟩) = 4
2827oveq2i 6993 . . . . 5 (0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩)) = (0..^4)
2928feq2i 6341 . . . 4 (⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃 ↔ ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^4)⟶𝑃)
3026, 29sylib 210 . . 3 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^4)⟶𝑃)
311, 2, 3, 4, 8, 19, 30iscgrglt 26017 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)))))
3219fdmd 6358 . . . . . . 7 (𝜑 → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = (0..^4))
33 3p1e4 11598 . . . . . . . . 9 (3 + 1) = 4
3433oveq2i 6993 . . . . . . . 8 (0..^(3 + 1)) = (0..^4)
35 3nn0 11733 . . . . . . . . . 10 3 ∈ ℕ0
36 nn0uz 12100 . . . . . . . . . 10 0 = (ℤ‘0)
3735, 36eleqtri 2866 . . . . . . . . 9 3 ∈ (ℤ‘0)
38 fzosplitsn 12966 . . . . . . . . 9 (3 ∈ (ℤ‘0) → (0..^(3 + 1)) = ((0..^3) ∪ {3}))
3937, 38ax-mp 5 . . . . . . . 8 (0..^(3 + 1)) = ((0..^3) ∪ {3})
4034, 39eqtr3i 2806 . . . . . . 7 (0..^4) = ((0..^3) ∪ {3})
4132, 40syl6eq 2832 . . . . . 6 (𝜑 → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = ((0..^3) ∪ {3}))
4241raleqdv 3357 . . . . 5 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)))))
43 breq2 4938 . . . . . . . 8 (𝑗 = 3 → (𝑖 < 𝑗𝑖 < 3))
44 fveq2 6504 . . . . . . . . . 10 (𝑗 = 3 → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3))
4544oveq2d 6998 . . . . . . . . 9 (𝑗 = 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)))
46 fveq2 6504 . . . . . . . . . 10 (𝑗 = 3 → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = (⟨“𝑊𝑋𝑌𝑍”⟩‘3))
4746oveq2d 6998 . . . . . . . . 9 (𝑗 = 3 → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))
4845, 47eqeq12d 2795 . . . . . . . 8 (𝑗 = 3 → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))
4943, 48imbi12d 337 . . . . . . 7 (𝑗 = 3 → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
5049ralunsn 4703 . . . . . 6 (3 ∈ ℕ0 → (∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5135, 50ax-mp 5 . . . . 5 (∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
5242, 51syl6bb 279 . . . 4 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5352ralbidv 3149 . . 3 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5441raleqdv 3357 . . . 4 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
55 fzo0ssnn0 12939 . . . . . . . . . . . . . . . 16 (0..^3) ⊆ ℕ0
5655, 6sstri 3869 . . . . . . . . . . . . . . 15 (0..^3) ⊆ ℝ
57 simpr 477 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ (0..^3))
5856, 57sseldi 3858 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ ℝ)
59 simpl 475 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 = 3)
60 3re 11526 . . . . . . . . . . . . . . 15 3 ∈ ℝ
6159, 60syl6eqel 2876 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 ∈ ℝ)
62 elfzolt2 12869 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^3) → 𝑗 < 3)
6362adantl 474 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 3)
6463, 59breqtrrd 4962 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 𝑖)
6558, 61, 64ltnsymd 10595 . . . . . . . . . . . . 13 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ¬ 𝑖 < 𝑗)
6665pm2.21d 119 . . . . . . . . . . . 12 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → (𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))))
67 tbtru 1516 . . . . . . . . . . . 12 ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
6866, 67sylib 210 . . . . . . . . . . 11 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
6968ralbidva 3148 . . . . . . . . . 10 (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)⊤))
70 3nn 11525 . . . . . . . . . . . . 13 3 ∈ ℕ
71 lbfzo0 12898 . . . . . . . . . . . . 13 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
7270, 71mpbir 223 . . . . . . . . . . . 12 0 ∈ (0..^3)
7372ne0ii 4192 . . . . . . . . . . 11 (0..^3) ≠ ∅
74 r19.3rzv 4330 . . . . . . . . . . 11 ((0..^3) ≠ ∅ → (⊤ ↔ ∀𝑗 ∈ (0..^3)⊤))
7573, 74ax-mp 5 . . . . . . . . . 10 (⊤ ↔ ∀𝑗 ∈ (0..^3)⊤)
7669, 75syl6bbr 281 . . . . . . . . 9 (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
77 breq1 4937 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 < 3 ↔ 3 < 3))
7860ltnri 10555 . . . . . . . . . . . . 13 ¬ 3 < 3
7978bifal 1524 . . . . . . . . . . . 12 (3 < 3 ↔ ⊥)
8077, 79syl6bb 279 . . . . . . . . . . 11 (𝑖 = 3 → (𝑖 < 3 ↔ ⊥))
8180imbi1d 334 . . . . . . . . . 10 (𝑖 = 3 → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
82 falim 1525 . . . . . . . . . . 11 (⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))
8382bitru 1517 . . . . . . . . . 10 ((⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ⊤)
8481, 83syl6bb 279 . . . . . . . . 9 (𝑖 = 3 → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ⊤))
8576, 84anbi12d 622 . . . . . . . 8 (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⊤ ∧ ⊤)))
86 anidm 557 . . . . . . . 8 ((⊤ ∧ ⊤) ↔ ⊤)
8785, 86syl6bb 279 . . . . . . 7 (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ⊤))
8887ralunsn 4703 . . . . . 6 (3 ∈ ℕ0 → (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤)))
8935, 88ax-mp 5 . . . . 5 (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤))
90 ancom 453 . . . . 5 ((∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤) ↔ (⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
91 truan 1519 . . . . 5 ((⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
9289, 90, 913bitri 289 . . . 4 (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
9354, 92syl6bb 279 . . 3 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
9453, 93bitrd 271 . 2 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
95 r19.26 3122 . . 3 (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
969, 10, 11s3cld 14102 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
97 wrdf 13683 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
9896, 97syl 17 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
99 s3len 14124 . . . . . . . . . 10 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
10099oveq2i 6993 . . . . . . . . 9 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
101100feq2i 6341 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶𝑃)
10298, 101sylib 210 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶𝑃)
103102fdmd 6358 . . . . . 6 (𝜑 → dom ⟨“𝐴𝐵𝐶”⟩ = (0..^3))
104 fdm 6357 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶𝑃 → dom ⟨“𝐴𝐵𝐶”⟩ = (0..^3))
105 raleq 3347 . . . . . . 7 (dom ⟨“𝐴𝐵𝐶”⟩ = (0..^3) → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
106102, 104, 1053syl 18 . . . . . 6 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
107103, 106raleqbidv 3343 . . . . 5 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
10856a1i 11 . . . . . 6 (𝜑 → (0..^3) ⊆ ℝ)
10920, 21, 22s3cld 14102 . . . . . . . 8 (𝜑 → ⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃)
110 wrdf 13683 . . . . . . . 8 (⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 → ⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃)
111109, 110syl 17 . . . . . . 7 (𝜑 → ⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃)
112 s3len 14124 . . . . . . . . 9 (♯‘⟨“𝑊𝑋𝑌”⟩) = 3
113112oveq2i 6993 . . . . . . . 8 (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)) = (0..^3)
114113feq2i 6341 . . . . . . 7 (⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃 ↔ ⟨“𝑊𝑋𝑌”⟩:(0..^3)⟶𝑃)
115111, 114sylib 210 . . . . . 6 (𝜑 → ⟨“𝑊𝑋𝑌”⟩:(0..^3)⟶𝑃)
1161, 2, 3, 4, 108, 102, 115iscgrglt 26017 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
117 df-s4 14080 . . . . . . . . . . 11 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
118117fveq1i 6505 . . . . . . . . . 10 (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖)
1199adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐴𝑃)
12010adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐵𝑃)
12111adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐶𝑃)
122119, 120, 121s3cld 14102 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
12312adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐷𝑃)
124123s1cld 13772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝐷”⟩ ∈ Word 𝑃)
125 simprl 759 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^3))
126125, 100syl6eleqr 2879 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)))
127 ccatval1 13746 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ ⟨“𝐷”⟩ ∈ Word 𝑃𝑖 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
128122, 124, 126, 127syl3anc 1352 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
129118, 128syl5eq 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
130117fveq1i 6505 . . . . . . . . . 10 (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗)
131 simprr 761 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^3))
132131, 100syl6eleqr 2879 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)))
133 ccatval1 13746 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ ⟨“𝐷”⟩ ∈ Word 𝑃𝑗 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
134122, 124, 132, 133syl3anc 1352 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
135130, 134syl5eq 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
136129, 135oveq12d 7000 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)))
137 df-s4 14080 . . . . . . . . . . 11 ⟨“𝑊𝑋𝑌𝑍”⟩ = (⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)
138137fveq1i 6505 . . . . . . . . . 10 (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖)
13920adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑊𝑃)
14021adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑋𝑃)
14122adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑌𝑃)
142139, 140, 141s3cld 14102 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃)
14323adantr 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑍𝑃)
144143s1cld 13772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝑍”⟩ ∈ Word 𝑃)
145125, 113syl6eleqr 2879 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)))
146 ccatval1 13746 . . . . . . . . . . 11 ((⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 ∧ ⟨“𝑍”⟩ ∈ Word 𝑃𝑖 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
147142, 144, 145, 146syl3anc 1352 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
148138, 147syl5eq 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
149137fveq1i 6505 . . . . . . . . . 10 (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗)
150131, 113syl6eleqr 2879 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)))
151 ccatval1 13746 . . . . . . . . . . 11 ((⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 ∧ ⟨“𝑍”⟩ ∈ Word 𝑃𝑗 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
152142, 144, 150, 151syl3anc 1352 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
153149, 152syl5eq 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
154148, 153oveq12d 7000 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))
155136, 154eqeq12d 2795 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))))
156155imbi2d 333 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
1571562ralbidva 3150 . . . . 5 (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
158107, 116, 1573bitr4rd 304 . . . 4 (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩))
159 fzo0to3tp 12944 . . . . . 6 (0..^3) = {0, 1, 2}
160 raleq 3347 . . . . . 6 ((0..^3) = {0, 1, 2} → (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
161159, 160mp1i 13 . . . . 5 (𝜑 → (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
162 3pos 11558 . . . . . . . . . 10 0 < 3
163 breq1 4937 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 < 3 ↔ 0 < 3))
164162, 163mpbiri 250 . . . . . . . . 9 (𝑖 = 0 → 𝑖 < 3)
165164adantl 474 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 < 3)
166 biimt 353 . . . . . . . 8 (𝑖 < 3 → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
167165, 166syl 17 . . . . . . 7 ((𝜑𝑖 = 0) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
168 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → 𝑖 = 0)
169168fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0))
170 s4fv0 14125 . . . . . . . . . . . 12 (𝐴𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
1719, 170syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
172171adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
173169, 172eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐴)
174 s4fv3 14128 . . . . . . . . . . 11 (𝐷𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
17512, 174syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
176175adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
177173, 176oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 0) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐴 𝐷))
178168fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘0))
179 s4fv0 14125 . . . . . . . . . . . 12 (𝑊𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘0) = 𝑊)
18020, 179syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘0) = 𝑊)
181180adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘0) = 𝑊)
182178, 181eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑊)
183 s4fv3 14128 . . . . . . . . . . 11 (𝑍𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
18423, 183syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
185184adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
186182, 185oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 0) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑊 𝑍))
187177, 186eqeq12d 2795 . . . . . . 7 ((𝜑𝑖 = 0) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐴 𝐷) = (𝑊 𝑍)))
188167, 187bitr3d 273 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐴 𝐷) = (𝑊 𝑍)))
189 1lt3 11626 . . . . . . . . . 10 1 < 3
190 breq1 4937 . . . . . . . . . 10 (𝑖 = 1 → (𝑖 < 3 ↔ 1 < 3))
191189, 190mpbiri 250 . . . . . . . . 9 (𝑖 = 1 → 𝑖 < 3)
192191adantl 474 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝑖 < 3)
193192, 166syl 17 . . . . . . 7 ((𝜑𝑖 = 1) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
194 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖 = 1) → 𝑖 = 1)
195194fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘1))
196 s4fv1 14126 . . . . . . . . . . . 12 (𝐵𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
19710, 196syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
198197adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
199195, 198eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐵)
200175adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
201199, 200oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 1) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐵 𝐷))
202194fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘1))
203 s4fv1 14126 . . . . . . . . . . . 12 (𝑋𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘1) = 𝑋)
20421, 203syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘1) = 𝑋)
205204adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘1) = 𝑋)
206202, 205eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑋)
207184adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
208206, 207oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 1) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑋 𝑍))
209201, 208eqeq12d 2795 . . . . . . 7 ((𝜑𝑖 = 1) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐵 𝐷) = (𝑋 𝑍)))
210193, 209bitr3d 273 . . . . . 6 ((𝜑𝑖 = 1) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐵 𝐷) = (𝑋 𝑍)))
211 2lt3 11625 . . . . . . . . . 10 2 < 3
212 breq1 4937 . . . . . . . . . 10 (𝑖 = 2 → (𝑖 < 3 ↔ 2 < 3))
213211, 212mpbiri 250 . . . . . . . . 9 (𝑖 = 2 → 𝑖 < 3)
214213adantl 474 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝑖 < 3)
215214, 166syl 17 . . . . . . 7 ((𝜑𝑖 = 2) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
216 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖 = 2) → 𝑖 = 2)
217216fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘2))
218 s4fv2 14127 . . . . . . . . . . . 12 (𝐶𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
21911, 218syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
220219adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
221217, 220eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐶)
222175adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
223221, 222oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 2) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐶 𝐷))
224216fveq2d 6508 . . . . . . . . . 10 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘2))
225 s4fv2 14127 . . . . . . . . . . . 12 (𝑌𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘2) = 𝑌)
22622, 225syl 17 . . . . . . . . . . 11 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘2) = 𝑌)
227226adantr 473 . . . . . . . . . 10 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘2) = 𝑌)
228224, 227eqtrd 2816 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑌)
229184adantr 473 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
230228, 229oveq12d 7000 . . . . . . . 8 ((𝜑𝑖 = 2) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑌 𝑍))
231223, 230eqeq12d 2795 . . . . . . 7 ((𝜑𝑖 = 2) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐶 𝐷) = (𝑌 𝑍)))
232215, 231bitr3d 273 . . . . . 6 ((𝜑𝑖 = 2) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐶 𝐷) = (𝑌 𝑍)))
233 0red 10449 . . . . . 6 (𝜑 → 0 ∈ ℝ)
234 1red 10446 . . . . . 6 (𝜑 → 1 ∈ ℝ)
235 2re 11520 . . . . . . 7 2 ∈ ℝ
236235a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237188, 210, 232, 233, 234, 236raltpd 4595 . . . . 5 (𝜑 → (∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍))))
238161, 237bitrd 271 . . . 4 (𝜑 → (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍))))
239158, 238anbi12d 622 . . 3 (𝜑 → ((∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
24095, 239syl5bb 275 . 2 (𝜑 → (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
24131, 94, 2403bitrd 297 1 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wtru 1509  wfal 1520  wcel 2051  wne 2969  wral 3090  cun 3829  wss 3831  c0 4181  {csn 4444  {ctp 4448   class class class wbr 4934  dom cdm 5411  wf 6189  cfv 6193  (class class class)co 6982  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   < clt 10480  cn 11445  2c2 11501  3c3 11502  4c4 11503  0cn0 11713  cuz 12064  ..^cfzo 12855  chash 13511  Word cword 13678   ++ cconcat 13739  ⟨“cs1 13764  ⟨“cs3 14072  ⟨“cs4 14073  Basecbs 16345  distcds 16436  TarskiGcstrkg 25933  Itvcitv 25939  cgrGccgrg 26013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-n0 11714  df-z 11800  df-uz 12065  df-fz 12715  df-fzo 12856  df-hash 13512  df-word 13679  df-concat 13740  df-s1 13765  df-s2 14078  df-s3 14079  df-s4 14080  df-trkgc 25951  df-trkgcb 25953  df-trkg 25956  df-cgrg 26014
This theorem is referenced by:  cgrg3col4  26357
  Copyright terms: Public domain W3C validator