MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgr4 Structured version   Visualization version   GIF version

Theorem tgcgr4 26328
Description: Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgr4.a (𝜑𝐴𝑃)
tgcgr4.b (𝜑𝐵𝑃)
tgcgr4.c (𝜑𝐶𝑃)
tgcgr4.d (𝜑𝐷𝑃)
tgcgr4.w (𝜑𝑊𝑃)
tgcgr4.x (𝜑𝑋𝑃)
tgcgr4.y (𝜑𝑌𝑃)
tgcgr4.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcgr4 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))

Proof of Theorem tgcgr4
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.p . . 3 𝑃 = (Base‘𝐺)
2 tgcgrxfr.m . . 3 = (dist‘𝐺)
3 tgcgrxfr.r . . 3 = (cgrG‘𝐺)
4 tgcgrxfr.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 fzo0ssnn0 13117 . . . . 5 (0..^4) ⊆ ℕ0
6 nn0ssre 11893 . . . . 5 0 ⊆ ℝ
75, 6sstri 3927 . . . 4 (0..^4) ⊆ ℝ
87a1i 11 . . 3 (𝜑 → (0..^4) ⊆ ℝ)
9 tgcgr4.a . . . . . 6 (𝜑𝐴𝑃)
10 tgcgr4.b . . . . . 6 (𝜑𝐵𝑃)
11 tgcgr4.c . . . . . 6 (𝜑𝐶𝑃)
12 tgcgr4.d . . . . . 6 (𝜑𝐷𝑃)
139, 10, 11, 12s4cld 14230 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑃)
14 wrdf 13866 . . . . 5 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃)
1513, 14syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃)
16 s4len 14256 . . . . . 6 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
1716oveq2i 7150 . . . . 5 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩)) = (0..^4)
1817feq2i 6483 . . . 4 (⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶𝑃)
1915, 18sylib 221 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶𝑃)
20 tgcgr4.w . . . . . 6 (𝜑𝑊𝑃)
21 tgcgr4.x . . . . . 6 (𝜑𝑋𝑃)
22 tgcgr4.y . . . . . 6 (𝜑𝑌𝑃)
23 tgcgr4.z . . . . . 6 (𝜑𝑍𝑃)
2420, 21, 22, 23s4cld 14230 . . . . 5 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩ ∈ Word 𝑃)
25 wrdf 13866 . . . . 5 (⟨“𝑊𝑋𝑌𝑍”⟩ ∈ Word 𝑃 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃)
2624, 25syl 17 . . . 4 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃)
27 s4len 14256 . . . . . 6 (♯‘⟨“𝑊𝑋𝑌𝑍”⟩) = 4
2827oveq2i 7150 . . . . 5 (0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩)) = (0..^4)
2928feq2i 6483 . . . 4 (⟨“𝑊𝑋𝑌𝑍”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌𝑍”⟩))⟶𝑃 ↔ ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^4)⟶𝑃)
3026, 29sylib 221 . . 3 (𝜑 → ⟨“𝑊𝑋𝑌𝑍”⟩:(0..^4)⟶𝑃)
311, 2, 3, 4, 8, 19, 30iscgrglt 26311 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)))))
3219fdmd 6501 . . . . . . 7 (𝜑 → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = (0..^4))
33 3p1e4 11774 . . . . . . . . 9 (3 + 1) = 4
3433oveq2i 7150 . . . . . . . 8 (0..^(3 + 1)) = (0..^4)
35 3nn0 11907 . . . . . . . . . 10 3 ∈ ℕ0
36 nn0uz 12272 . . . . . . . . . 10 0 = (ℤ‘0)
3735, 36eleqtri 2891 . . . . . . . . 9 3 ∈ (ℤ‘0)
38 fzosplitsn 13144 . . . . . . . . 9 (3 ∈ (ℤ‘0) → (0..^(3 + 1)) = ((0..^3) ∪ {3}))
3937, 38ax-mp 5 . . . . . . . 8 (0..^(3 + 1)) = ((0..^3) ∪ {3})
4034, 39eqtr3i 2826 . . . . . . 7 (0..^4) = ((0..^3) ∪ {3})
4132, 40eqtrdi 2852 . . . . . 6 (𝜑 → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = ((0..^3) ∪ {3}))
4241raleqdv 3367 . . . . 5 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)))))
43 breq2 5037 . . . . . . . 8 (𝑗 = 3 → (𝑖 < 𝑗𝑖 < 3))
44 fveq2 6649 . . . . . . . . . 10 (𝑗 = 3 → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3))
4544oveq2d 7155 . . . . . . . . 9 (𝑗 = 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)))
46 fveq2 6649 . . . . . . . . . 10 (𝑗 = 3 → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = (⟨“𝑊𝑋𝑌𝑍”⟩‘3))
4746oveq2d 7155 . . . . . . . . 9 (𝑗 = 3 → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))
4845, 47eqeq12d 2817 . . . . . . . 8 (𝑗 = 3 → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))
4943, 48imbi12d 348 . . . . . . 7 (𝑗 = 3 → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
5049ralunsn 4789 . . . . . 6 (3 ∈ ℕ0 → (∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5135, 50ax-mp 5 . . . . 5 (∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
5242, 51syl6bb 290 . . . 4 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5352ralbidv 3165 . . 3 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
5441raleqdv 3367 . . . 4 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
55 fzo0ssnn0 13117 . . . . . . . . . . . . . . . 16 (0..^3) ⊆ ℕ0
5655, 6sstri 3927 . . . . . . . . . . . . . . 15 (0..^3) ⊆ ℝ
57 simpr 488 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ (0..^3))
5856, 57sseldi 3916 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ ℝ)
59 simpl 486 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 = 3)
60 3re 11709 . . . . . . . . . . . . . . 15 3 ∈ ℝ
6159, 60eqeltrdi 2901 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 ∈ ℝ)
62 elfzolt2 13046 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^3) → 𝑗 < 3)
6362adantl 485 . . . . . . . . . . . . . . 15 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 3)
6463, 59breqtrrd 5061 . . . . . . . . . . . . . 14 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 𝑖)
6558, 61, 64ltnsymd 10782 . . . . . . . . . . . . 13 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ¬ 𝑖 < 𝑗)
6665pm2.21d 121 . . . . . . . . . . . 12 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → (𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))))
67 tbtru 1546 . . . . . . . . . . . 12 ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
6866, 67sylib 221 . . . . . . . . . . 11 ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
6968ralbidva 3164 . . . . . . . . . 10 (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)⊤))
70 3nn 11708 . . . . . . . . . . . . 13 3 ∈ ℕ
71 lbfzo0 13076 . . . . . . . . . . . . 13 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
7270, 71mpbir 234 . . . . . . . . . . . 12 0 ∈ (0..^3)
7372ne0ii 4256 . . . . . . . . . . 11 (0..^3) ≠ ∅
74 r19.3rzv 4405 . . . . . . . . . . 11 ((0..^3) ≠ ∅ → (⊤ ↔ ∀𝑗 ∈ (0..^3)⊤))
7573, 74ax-mp 5 . . . . . . . . . 10 (⊤ ↔ ∀𝑗 ∈ (0..^3)⊤)
7669, 75syl6bbr 292 . . . . . . . . 9 (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⊤))
77 breq1 5036 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 < 3 ↔ 3 < 3))
7860ltnri 10742 . . . . . . . . . . . . 13 ¬ 3 < 3
7978bifal 1554 . . . . . . . . . . . 12 (3 < 3 ↔ ⊥)
8077, 79syl6bb 290 . . . . . . . . . . 11 (𝑖 = 3 → (𝑖 < 3 ↔ ⊥))
8180imbi1d 345 . . . . . . . . . 10 (𝑖 = 3 → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
82 falim 1555 . . . . . . . . . . 11 (⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))
8382bitru 1547 . . . . . . . . . 10 ((⊥ → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ⊤)
8481, 83syl6bb 290 . . . . . . . . 9 (𝑖 = 3 → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ⊤))
8576, 84anbi12d 633 . . . . . . . 8 (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⊤ ∧ ⊤)))
86 anidm 568 . . . . . . . 8 ((⊤ ∧ ⊤) ↔ ⊤)
8785, 86syl6bb 290 . . . . . . 7 (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ⊤))
8887ralunsn 4789 . . . . . 6 (3 ∈ ℕ0 → (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤)))
8935, 88ax-mp 5 . . . . 5 (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤))
90 ancom 464 . . . . 5 ((∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ∧ ⊤) ↔ (⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
91 truan 1549 . . . . 5 ((⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
9289, 90, 913bitri 300 . . . 4 (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
9354, 92syl6bb 290 . . 3 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
9453, 93bitrd 282 . 2 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶𝐷”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))))
95 r19.26 3140 . . 3 (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
969, 10, 11s3cld 14229 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
97 wrdf 13866 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
9896, 97syl 17 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
99 s3len 14251 . . . . . . . . . 10 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
10099oveq2i 7150 . . . . . . . . 9 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
101100feq2i 6483 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶𝑃)
10298, 101sylib 221 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶𝑃)
103102fdmd 6501 . . . . . 6 (𝜑 → dom ⟨“𝐴𝐵𝐶”⟩ = (0..^3))
104103raleqdv 3367 . . . . . 6 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
105103, 104raleqbidv 3357 . . . . 5 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
10656a1i 11 . . . . . 6 (𝜑 → (0..^3) ⊆ ℝ)
10720, 21, 22s3cld 14229 . . . . . . . 8 (𝜑 → ⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃)
108 wrdf 13866 . . . . . . . 8 (⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 → ⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃)
109107, 108syl 17 . . . . . . 7 (𝜑 → ⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃)
110 s3len 14251 . . . . . . . . 9 (♯‘⟨“𝑊𝑋𝑌”⟩) = 3
111110oveq2i 7150 . . . . . . . 8 (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)) = (0..^3)
112111feq2i 6483 . . . . . . 7 (⟨“𝑊𝑋𝑌”⟩:(0..^(♯‘⟨“𝑊𝑋𝑌”⟩))⟶𝑃 ↔ ⟨“𝑊𝑋𝑌”⟩:(0..^3)⟶𝑃)
113109, 112sylib 221 . . . . . 6 (𝜑 → ⟨“𝑊𝑋𝑌”⟩:(0..^3)⟶𝑃)
1141, 2, 3, 4, 106, 102, 113iscgrglt 26311 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
115 df-s4 14207 . . . . . . . . . . 11 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
116115fveq1i 6650 . . . . . . . . . 10 (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖)
1179adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐴𝑃)
11810adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐵𝑃)
11911adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐶𝑃)
120117, 118, 119s3cld 14229 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
12112adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐷𝑃)
122121s1cld 13952 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝐷”⟩ ∈ Word 𝑃)
123 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^3))
124123, 100eleqtrrdi 2904 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)))
125 ccatval1 13925 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ ⟨“𝐷”⟩ ∈ Word 𝑃𝑖 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
126120, 122, 124, 125syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
127116, 126syl5eq 2848 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
128115fveq1i 6650 . . . . . . . . . 10 (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗)
129 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^3))
130129, 100eleqtrrdi 2904 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)))
131 ccatval1 13925 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ ⟨“𝐷”⟩ ∈ Word 𝑃𝑗 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
132120, 122, 130, 131syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
133128, 132syl5eq 2848 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘𝑗))
134127, 133oveq12d 7157 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)))
135 df-s4 14207 . . . . . . . . . . 11 ⟨“𝑊𝑋𝑌𝑍”⟩ = (⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)
136135fveq1i 6650 . . . . . . . . . 10 (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖)
13720adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑊𝑃)
13821adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑋𝑃)
13922adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑌𝑃)
140137, 138, 139s3cld 14229 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃)
14123adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑍𝑃)
142141s1cld 13952 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ⟨“𝑍”⟩ ∈ Word 𝑃)
143123, 111eleqtrrdi 2904 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)))
144 ccatval1 13925 . . . . . . . . . . 11 ((⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 ∧ ⟨“𝑍”⟩ ∈ Word 𝑃𝑖 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
145140, 142, 143, 144syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
146136, 145syl5eq 2848 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌”⟩‘𝑖))
147135fveq1i 6650 . . . . . . . . . 10 (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗)
148129, 111eleqtrrdi 2904 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩)))
149 ccatval1 13925 . . . . . . . . . . 11 ((⟨“𝑊𝑋𝑌”⟩ ∈ Word 𝑃 ∧ ⟨“𝑍”⟩ ∈ Word 𝑃𝑗 ∈ (0..^(♯‘⟨“𝑊𝑋𝑌”⟩))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
150140, 142, 148, 149syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌”⟩ ++ ⟨“𝑍”⟩)‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
151147, 150syl5eq 2848 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗) = (⟨“𝑊𝑋𝑌”⟩‘𝑗))
152146, 151oveq12d 7157 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))
153134, 152eqeq12d 2817 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗))))
154153imbi2d 344 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ (𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
1551542ralbidva 3166 . . . . 5 (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌”⟩‘𝑖) (⟨“𝑊𝑋𝑌”⟩‘𝑗)))))
156105, 114, 1553bitr4rd 315 . . . 4 (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩))
157 fzo0to3tp 13122 . . . . . 6 (0..^3) = {0, 1, 2}
158157raleqi 3365 . . . . 5 (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))))
159 3pos 11734 . . . . . . . . . 10 0 < 3
160 breq1 5036 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 < 3 ↔ 0 < 3))
161159, 160mpbiri 261 . . . . . . . . 9 (𝑖 = 0 → 𝑖 < 3)
162161adantl 485 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 < 3)
163 biimt 364 . . . . . . . 8 (𝑖 < 3 → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
164162, 163syl 17 . . . . . . 7 ((𝜑𝑖 = 0) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
165 fveq2 6649 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0))
166 s4fv0 14252 . . . . . . . . . . 11 (𝐴𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
1679, 166syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
168165, 167sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐴)
169 s4fv3 14255 . . . . . . . . . . 11 (𝐷𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
17012, 169syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
171170adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
172168, 171oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 0) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐴 𝐷))
173 fveq2 6649 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘0))
174 s4fv0 14252 . . . . . . . . . . 11 (𝑊𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘0) = 𝑊)
17520, 174syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘0) = 𝑊)
176173, 175sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑊)
177 s4fv3 14255 . . . . . . . . . . 11 (𝑍𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
17823, 177syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
179178adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
180176, 179oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 0) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑊 𝑍))
181172, 180eqeq12d 2817 . . . . . . 7 ((𝜑𝑖 = 0) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐴 𝐷) = (𝑊 𝑍)))
182164, 181bitr3d 284 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐴 𝐷) = (𝑊 𝑍)))
183 1lt3 11802 . . . . . . . . . 10 1 < 3
184 breq1 5036 . . . . . . . . . 10 (𝑖 = 1 → (𝑖 < 3 ↔ 1 < 3))
185183, 184mpbiri 261 . . . . . . . . 9 (𝑖 = 1 → 𝑖 < 3)
186185adantl 485 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝑖 < 3)
187186, 163syl 17 . . . . . . 7 ((𝜑𝑖 = 1) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
188 fveq2 6649 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘1))
189 s4fv1 14253 . . . . . . . . . . 11 (𝐵𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
19010, 189syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
191188, 190sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐵)
192170adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
193191, 192oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 1) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐵 𝐷))
194 fveq2 6649 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘1))
195 s4fv1 14253 . . . . . . . . . . 11 (𝑋𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘1) = 𝑋)
19621, 195syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘1) = 𝑋)
197194, 196sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑋)
198178adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
199197, 198oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 1) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑋 𝑍))
200193, 199eqeq12d 2817 . . . . . . 7 ((𝜑𝑖 = 1) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐵 𝐷) = (𝑋 𝑍)))
201187, 200bitr3d 284 . . . . . 6 ((𝜑𝑖 = 1) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐵 𝐷) = (𝑋 𝑍)))
202 2lt3 11801 . . . . . . . . . 10 2 < 3
203 breq1 5036 . . . . . . . . . 10 (𝑖 = 2 → (𝑖 < 3 ↔ 2 < 3))
204202, 203mpbiri 261 . . . . . . . . 9 (𝑖 = 2 → 𝑖 < 3)
205204adantl 485 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝑖 < 3)
206205, 163syl 17 . . . . . . 7 ((𝜑𝑖 = 2) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))))
207 fveq2 6649 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = (⟨“𝐴𝐵𝐶𝐷”⟩‘2))
208 s4fv2 14254 . . . . . . . . . . 11 (𝐶𝑃 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
20911, 208syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
210207, 209sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) = 𝐶)
211170adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
212210, 211oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 2) → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = (𝐶 𝐷))
213 fveq2 6649 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = (⟨“𝑊𝑋𝑌𝑍”⟩‘2))
214 s4fv2 14254 . . . . . . . . . . 11 (𝑌𝑃 → (⟨“𝑊𝑋𝑌𝑍”⟩‘2) = 𝑌)
21522, 214syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝑊𝑋𝑌𝑍”⟩‘2) = 𝑌)
216213, 215sylan9eqr 2858 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) = 𝑌)
217178adantr 484 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝑊𝑋𝑌𝑍”⟩‘3) = 𝑍)
218216, 217oveq12d 7157 . . . . . . . 8 ((𝜑𝑖 = 2) → ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) = (𝑌 𝑍))
219212, 218eqeq12d 2817 . . . . . . 7 ((𝜑𝑖 = 2) → (((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)) ↔ (𝐶 𝐷) = (𝑌 𝑍)))
220206, 219bitr3d 284 . . . . . 6 ((𝜑𝑖 = 2) → ((𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ (𝐶 𝐷) = (𝑌 𝑍)))
221 0red 10637 . . . . . 6 (𝜑 → 0 ∈ ℝ)
222 1red 10635 . . . . . 6 (𝜑 → 1 ∈ ℝ)
223 2re 11703 . . . . . . 7 2 ∈ ℝ
224223a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
225182, 201, 220, 221, 222, 224raltpd 4680 . . . . 5 (𝜑 → (∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍))))
226158, 225syl5bb 286 . . . 4 (𝜑 → (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3))) ↔ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍))))
227156, 226anbi12d 633 . . 3 (𝜑 → ((∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
22895, 227syl5bb 286 . 2 (𝜑 → (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘𝑗)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘𝑗))) ∧ (𝑖 < 3 → ((⟨“𝐴𝐵𝐶𝐷”⟩‘𝑖) (⟨“𝐴𝐵𝐶𝐷”⟩‘3)) = ((⟨“𝑊𝑋𝑌𝑍”⟩‘𝑖) (⟨“𝑊𝑋𝑌𝑍”⟩‘3)))) ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
22931, 94, 2283bitrd 308 1 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wfal 1550  wcel 2112  wne 2990  wral 3109  cun 3882  wss 3884  c0 4246  {csn 4528  {ctp 4532   class class class wbr 5033  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668  cn 11629  2c2 11684  3c3 11685  4c4 11686  0cn0 11889  cuz 12235  ..^cfzo 13032  chash 13690  Word cword 13861   ++ cconcat 13917  ⟨“cs1 13944  ⟨“cs3 14199  ⟨“cs4 14200  Basecbs 16478  distcds 16569  TarskiGcstrkg 26227  Itvcitv 26233  cgrGccgrg 26307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-s4 14207  df-trkgc 26245  df-trkgcb 26247  df-trkg 26250  df-cgrg 26308
This theorem is referenced by:  cgrg3col4  26650
  Copyright terms: Public domain W3C validator