![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drsb1 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by NM, 2-Jun-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drsb1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 2020 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
2 | 1 | sps 2170 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
3 | 2 | imbi1d 341 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → 𝜑))) |
4 | 2 | anbi1d 629 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 ∧ 𝜑) ↔ (𝑦 = 𝑧 ∧ 𝜑))) |
5 | 4 | drex1 2432 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) |
6 | 3, 5 | anbi12d 630 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)))) |
7 | dfsb1 2472 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
8 | dfsb1 2472 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∃wex 1773 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2163 ax-13 2363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1774 df-nf 1778 df-sb 2060 |
This theorem is referenced by: sb2ae 2487 sbco3 2504 iotaeq 6499 |
Copyright terms: Public domain | W3C validator |