|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfsb2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of proper substitution that, like dfsb1 2486, mixes free and bound variables to avoid distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 17-Feb-2005.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| dfsb2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sp 2183 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | sbequ2 2249 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 2 | sps 2185 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | 
| 4 | orc 868 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 5 | 1, 3, 4 | syl6an 684 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 6 | sb4b 2480 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 7 | olc 869 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 8 | 6, 7 | biimtrdi 253 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 9 | 5, 8 | pm2.61i 182 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 10 | sbequ1 2248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 11 | 10 | imp 406 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) | 
| 12 | sb2 2484 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
| 13 | 11, 12 | jaoi 858 | . 2 ⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑)) → [𝑦 / 𝑥]𝜑) | 
| 14 | 9, 13 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: dfsb3 2499 | 
| Copyright terms: Public domain | W3C validator |