Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb2 Structured version   Visualization version   GIF version

Theorem dfsb2 2532
 Description: An alternate definition of proper substitution that, like dfsb1 2511, mixes free and bound variables to avoid distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 2391. (Contributed by NM, 17-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dfsb2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem dfsb2
StepHypRef Expression
1 sp 2183 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 sbequ2 2251 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 2185 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
4 orc 864 . . . 4 ((𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 4syl6an 683 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
6 sb4b 2500 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
7 olc 865 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
86, 7syl6bi 256 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
95, 8pm2.61i 185 . 2 ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
10 sbequ1 2250 . . . 4 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1110imp 410 . . 3 ((𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
12 sb2 2505 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
1311, 12jaoi 854 . 2 (((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)) → [𝑦 / 𝑥]𝜑)
149, 13impbii 212 1 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844  ∀wal 1536  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2178  ax-13 2391 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  dfsb3  2533
 Copyright terms: Public domain W3C validator