| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difjust | Structured version Visualization version GIF version | ||
| Description: Soundness justification theorem for df-dif 3936. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| difjust | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑧 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵))) |
| 5 | 4 | cbvabv 2804 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} |
| 6 | eleq1w 2816 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 7 | eleq1w 2816 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 10 | 9 | cbvabv 2804 | . 2 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| 11 | 5, 10 | eqtri 2757 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |