Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difjust Structured version   Visualization version   GIF version

Theorem difjust 3941
 Description: Soundness justification theorem for df-dif 3942. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
difjust {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem difjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2898 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2898 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
32notbid 320 . . . 4 (𝑥 = 𝑧 → (¬ 𝑥𝐵 ↔ ¬ 𝑧𝐵))
41, 3anbi12d 632 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝐵)))
54cbvabv 2892 . 2 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)}
6 eleq1w 2898 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
7 eleq1w 2898 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
87notbid 320 . . . 4 (𝑧 = 𝑦 → (¬ 𝑧𝐵 ↔ ¬ 𝑦𝐵))
96, 8anbi12d 632 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ ¬ 𝑧𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
109cbvabv 2892 . 2 {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
115, 10eqtri 2847 1 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 398   = wceq 1536   ∈ wcel 2113  {cab 2802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-ext 2796 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1780  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator