Home | Metamath
Proof Explorer Theorem List (p. 40 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dfss 3901 | Variant of subclass definition df-ss 3900. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | ||
Definition | df-pss 3902 | Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 28693). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4031). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3900). Other possible definitions are given by dfpss2 4016 and dfpss3 4017. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | dfss2 3903* | Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by SN, 16-May-2024.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss2OLD 3904* | Obsolete version of dfss2 3903 as of 16-May-2024. (Contributed by NM, 8-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss3 3905* | Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | dfss6 3906* | Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
Theorem | dfss2f 3907 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2372. (Revised by Gino Giotto, 19-May-2023.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss3f 3908 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | nfss 3909 | If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 | ||
Theorem | ssel 3910 | Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) Avoid ax-12 2173. (Revised by SN, 27-May-2024.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | sselOLD 3911 | Obsolete version of ssel 3910 as of 27-May-2024. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | ssel2 3912 | Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
Theorem | sseli 3913 | Membership implication from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
Theorem | sselii 3914 | Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 ∈ 𝐴 ⇒ ⊢ 𝐶 ∈ 𝐵 | ||
Theorem | sselid 3915 | Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
Theorem | sseld 3916 | Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | sselda 3917 | Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
Theorem | sseldd 3918 | Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
Theorem | ssneld 3919 | If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) | ||
Theorem | ssneldd 3920 | If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | ssriv 3921* | Inference based on subclass definition. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | ssrd 3922 | Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ssrdv 3923* | Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | sstr2 3924 | Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
Theorem | sstr 3925 | Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | ||
Theorem | sstri 3926 | Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sstrd 3927 | Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sstrid 3928 | Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sstrdi 3929 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sylan9ss 3930 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) | ||
Theorem | sylan9ssr 3931 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) | ||
Theorem | eqss 3932 | The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | ||
Theorem | eqssi 3933 | Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqssd 3934 | Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | sssseq 3935 | If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.) |
⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | eqrd 3936 | Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqri 3937 | Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqelssd 3938* | Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | ssid 3939 | Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ 𝐴 ⊆ 𝐴 | ||
Theorem | ssidd 3940 | Weakening of ssid 3939. (Contributed by BJ, 1-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐴) | ||
Theorem | ssv 3941 | Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
⊢ 𝐴 ⊆ V | ||
Theorem | sseq1 3942 | Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
Theorem | sseq2 3943 | Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
Theorem | sseq12 3944 | Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
Theorem | sseq1i 3945 | An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | ||
Theorem | sseq2i 3946 | An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) | ||
Theorem | sseq12i 3947 | An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) | ||
Theorem | sseq1d 3948 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
Theorem | sseq2d 3949 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
Theorem | sseq12d 3950 | An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
Theorem | eqsstri 3951 | Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | eqsstrri 3952 | Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
⊢ 𝐵 = 𝐴 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sseqtri 3953 | Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sseqtrri 3954 | Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | eqsstrd 3955 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrd 3956 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrd 3957 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrrd 3958 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | 3sstr3i 3959 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
Theorem | 3sstr4i 3960 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
Theorem | 3sstr3g 3961 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr4g 3962 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr3d 3963 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr4d 3964 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | eqsstrid 3965 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrid 3966 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrdi 3967 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrrdi 3968 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrid 3969 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | sseqtrrid 3970 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | eqsstrdi 3971 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrdi 3972 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqimss 3973 | Equality implies inclusion. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | ||
Theorem | eqimss2 3974 | Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) | ||
Theorem | eqimssi 3975 | Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | eqimss2i 3976 | Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
Theorem | nssne1 3977 | Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ⊆ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | nssne2 3978 | Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | nss 3979* | Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
Theorem | nelss 3980 | Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) | ||
Theorem | ssrexf 3981 | Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ssrmof 3982 | "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | ssralv 3983* | Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | ssrexv 3984* | Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ss2ralv 3985* | Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | ||
Theorem | ss2rexv 3986* | Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) | ||
Theorem | ralss 3987* | Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) | ||
Theorem | rexss 3988* | Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
Theorem | ss2ab 3989 | Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | abss 3990* | Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | ||
Theorem | ssab 3991* | Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.) |
⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | ssabral 3992* | The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.) |
⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ss2abdv 3993* | Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) Avoid ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abdvALT 3994* | Alternate proof of ss2abdv 3993. Shorter, but requiring ax-8 2110. (Contributed by Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abdvOLD 3995* | Obsolete version of ss2abdv 3993 as of 28-Jun-2024. (Contributed by NM, 29-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abi 3996 | Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} | ||
Theorem | ss2abiOLD 3997 | Obsolete version of ss2abi 3996 as of 28-Jun-2024. (Contributed by NM, 31-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} | ||
Theorem | abssdv 3998* | Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) | ||
Theorem | abssi 3999* | Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 | ||
Theorem | ss2rab 4000 | Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |