Home | Metamath
Proof Explorer Theorem List (p. 40 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elneeldif 3901 | The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) | ||
Theorem | velcomp 3902 | Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) | ||
Theorem | elin 3903 | Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
Definition | df-ss 3904 |
Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18.
For example, {1, 2} ⊆ {1, 2, 3} (ex-ss 28791). Note that
𝐴
⊆ 𝐴 (proved in
ssid 3943). Contrast this relationship with the
relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3906). For a more
traditional definition, but requiring a dummy variable, see dfss2 3907.
Other possible definitions are given by dfss3 3909, dfss4 4192, sspss 4034,
ssequn1 4114, ssequn2 4117, sseqin2 4149, and ssdif0 4297.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 10879 and 1ex 10971) or ℝ ( cf. df-r 10881 and reex 10962). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 10962). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 27-Apr-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | ||
Theorem | dfss 3905 | Variant of subclass definition df-ss 3904. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | ||
Definition | df-pss 3906 | Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 28792). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4035). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3904). Other possible definitions are given by dfpss2 4020 and dfpss3 4021. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | dfss2 3907* | Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 16-May-2024.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss2OLD 3908* | Obsolete version of dfss2 3907 as of 16-May-2024. (Contributed by NM, 8-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss3 3909* | Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | dfss6 3910* | Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
Theorem | dfss2f 3911 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2372. (Revised by Gino Giotto, 19-May-2023.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | dfss3f 3912 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | nfss 3913 | If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 | ||
Theorem | ssel 3914 | Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) Avoid ax-12 2171. (Revised by SN, 27-May-2024.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | sselOLD 3915 | Obsolete version of ssel 3914 as of 27-May-2024. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | ssel2 3916 | Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
Theorem | sseli 3917 | Membership implication from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
Theorem | sselii 3918 | Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 ∈ 𝐴 ⇒ ⊢ 𝐶 ∈ 𝐵 | ||
Theorem | sselid 3919 | Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
Theorem | sseld 3920 | Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | sselda 3921 | Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
Theorem | sseldd 3922 | Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
Theorem | ssneld 3923 | If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) | ||
Theorem | ssneldd 3924 | If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | ssriv 3925* | Inference based on subclass definition. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | ssrd 3926 | Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ssrdv 3927* | Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | sstr2 3928 | Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
Theorem | sstr 3929 | Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | ||
Theorem | sstri 3930 | Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sstrd 3931 | Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sstrid 3932 | Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sstrdi 3933 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sylan9ss 3934 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) | ||
Theorem | sylan9ssr 3935 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) | ||
Theorem | eqss 3936 | The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | ||
Theorem | eqssi 3937 | Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqssd 3938 | Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | sssseq 3939 | If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.) |
⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | eqrd 3940 | Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqri 3941 | Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqelssd 3942* | Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | ssid 3943 | Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ 𝐴 ⊆ 𝐴 | ||
Theorem | ssidd 3944 | Weakening of ssid 3943. (Contributed by BJ, 1-Sep-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐴) | ||
Theorem | ssv 3945 | Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
⊢ 𝐴 ⊆ V | ||
Theorem | sseq1 3946 | Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
Theorem | sseq2 3947 | Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
Theorem | sseq12 3948 | Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
Theorem | sseq1i 3949 | An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | ||
Theorem | sseq2i 3950 | An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) | ||
Theorem | sseq12i 3951 | An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) | ||
Theorem | sseq1d 3952 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
Theorem | sseq2d 3953 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
Theorem | sseq12d 3954 | An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
Theorem | eqsstri 3955 | Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | eqsstrri 3956 | Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
⊢ 𝐵 = 𝐴 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sseqtri 3957 | Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | sseqtrri 3958 | Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | eqsstrd 3959 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrd 3960 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrd 3961 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrrd 3962 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | 3sstr3i 3963 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
Theorem | 3sstr4i 3964 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
Theorem | 3sstr3g 3965 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr4g 3966 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr3d 3967 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | 3sstr4d 3968 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
Theorem | eqsstrid 3969 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrid 3970 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrdi 3971 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrrdi 3972 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | sseqtrid 3973 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | sseqtrrid 3974 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | eqsstrdi 3975 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqsstrrdi 3976 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | eqimss 3977 | Equality implies inclusion. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | ||
Theorem | eqimss2 3978 | Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) | ||
Theorem | eqimssi 3979 | Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | eqimss2i 3980 | Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
Theorem | nssne1 3981 | Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ⊆ 𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | nssne2 3982 | Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | nss 3983* | Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
Theorem | nelss 3984 | Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) | ||
Theorem | ssrexf 3985 | Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ssrmof 3986 | "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | ssralv 3987* | Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | ssrexv 3988* | Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ss2ralv 3989* | Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | ||
Theorem | ss2rexv 3990* | Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) | ||
Theorem | ralss 3991* | Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) | ||
Theorem | rexss 3992* | Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
Theorem | ss2ab 3993 | Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | abss 3994* | Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | ||
Theorem | ssab 3995* | Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.) |
⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | ssabral 3996* | The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.) |
⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ss2abdv 3997* | Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) Avoid ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abdvALT 3998* | Alternate proof of ss2abdv 3997. Shorter, but requiring ax-8 2108. (Contributed by Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abdvOLD 3999* | Obsolete version of ss2abdv 3997 as of 28-Jun-2024. (Contributed by NM, 29-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) | ||
Theorem | ss2abi 4000 | Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |