| Metamath
Proof Explorer Theorem List (p. 40 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | csbie2 3901* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 | ||
| Theorem | csbie2g 3902* | Conversion of implicit substitution to explicit class substitution. This version of csbie 3897 avoids a disjointness condition on 𝑥, 𝐴 and 𝑥, 𝐷 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) | ||
| Theorem | cbvrabcsfw 3903* | Version of cbvrabcsf 3907 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 13-Jul-2011.) (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | cbvralcsf 3904 | A more general version of cbvralf 3334 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrexcsf 3905 | A more general version of cbvrexf 3335 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvreucsf 3906 | A more general version of cbvreuv 3400 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrabcsf 3907 | A more general version of cbvrab 3446 with no distinct variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | cbvralv2 3908* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) | ||
| Theorem | cbvrexv2 3909* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) | ||
| Theorem | rspc2vd 3910* | Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.) |
| ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) | ||
| Syntax | cdif 3911 | Extend class notation to include class difference (read: "𝐴 minus 𝐵"). |
| class (𝐴 ∖ 𝐵) | ||
| Syntax | cun 3912 | Extend class notation to include union of two classes (read: "𝐴 union 𝐵"). |
| class (𝐴 ∪ 𝐵) | ||
| Syntax | cin 3913 | Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵"). |
| class (𝐴 ∩ 𝐵) | ||
| Syntax | wss 3914 | Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴". When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵". |
| wff 𝐴 ⊆ 𝐵 | ||
| Syntax | wpss 3915 | Extend wff notation with proper subclass relation. |
| wff 𝐴 ⊊ 𝐵 | ||
| Theorem | difjust 3916* | Soundness justification theorem for df-dif 3917. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} | ||
| Definition | df-dif 3917* | Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. For example, ({1, 3} ∖ {1, 8}) = {3} (ex-dif 30352). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3919) and intersection (𝐴 ∩ 𝐵) (df-in 3921). Several notations are used in the literature; we chose the ∖ convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴 ∖ 𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | ||
| Theorem | unjust 3918* | Soundness justification theorem for df-un 3919. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} | ||
| Definition | df-un 3919* | Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∪ {1, 8}) = {1, 3, 8} (ex-un 30353). Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3917) and intersection (𝐴 ∩ 𝐵) (df-in 3921). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 4233. For union defined in terms of intersection, see dfun3 4239. (Contributed by NM, 23-Aug-1993.) |
| ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | ||
| Theorem | injust 3920* | Soundness justification theorem for df-in 3921. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
| Definition | df-in 3921* | Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30354). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3919) and difference (𝐴 ∖ 𝐵) (df-dif 3917). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4234 and dfin4 4241. For intersection defined in terms of union, see dfin3 4240. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | ||
| Theorem | dfin5 3922* | Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | ||
| Theorem | dfdif2 3923* | Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | ||
| Theorem | eldif 3924 | Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | ||
| Theorem | eldifd 3925 | If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3924. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | ||
| Theorem | eldifad 3926 | If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3924. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐵) | ||
| Theorem | eldifbd 3927 | If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3924. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | elneeldif 3928 | The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) | ||
| Theorem | velcomp 3929 | Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | elin 3930 | Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
| Definition | df-ss 3931* |
Define the subclass relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30356). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3969). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3934). For an
alternative definition, not requiring a dummy variable, see dfss2 3932.
Other possible definitions are given by dfss3 3935, dfss4 4232, sspss 4065,
ssequn1 4149, ssequn2 4152, sseqin2 4186, and ssdif0 4329.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11076 and 1ex 11170) or ℝ ( cf. df-r 11078 and reex 11159). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11159). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3932. (Revised by GG, 15-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss2 3932 | Alternate definition of the subclass relationship between two classes. Exercise 9 of [TakeutiZaring] p. 18. This was the original definition before df-ss 3931. (Contributed by NM, 27-Apr-1994.) Revise df-ss 3931. (Revised by GG, 15-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | ||
| Theorem | dfss 3933 | Variant of subclass definition dfss2 3932. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | ||
| Definition | df-pss 3934 | Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30357). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4066). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3931). Other possible definitions are given by dfpss2 4051 and dfpss3 4052. (Contributed by NM, 7-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | ||
| Theorem | dfss3 3935* | Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | dfss6 3936* | Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
| Theorem | dfssf 3937 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2370. (Revised by GG, 19-May-2023.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss3f 3938 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | nfss 3939 | If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 | ||
| Theorem | ssel 3940 | Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 27-May-2024.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | ssel2 3941 | Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseli 3942 | Membership implication from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
| Theorem | sselii 3943 | Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 ∈ 𝐴 ⇒ ⊢ 𝐶 ∈ 𝐵 | ||
| Theorem | sselid 3944 | Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | sseld 3945 | Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | sselda 3946 | Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseldd 3947 | Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | ssneld 3948 | If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) | ||
| Theorem | ssneldd 3949 | If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
| Theorem | ssriv 3950* | Inference based on subclass definition. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | ssrd 3951 | Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ssrdv 3952* | Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | sstr2 3953 | Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
| Theorem | sstr2OLD 3954 | Obsolete version of sstr2 3953 as of 19-May-2025. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
| Theorem | sstr 3955 | Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstri 3956 | Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sstrd 3957 | Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstrid 3958 | Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstrdi 3959 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sylan9ss 3960 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) | ||
| Theorem | sylan9ssr 3961 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqss 3962 | The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | ||
| Theorem | eqssi 3963 | Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | eqssd 3964 | Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | sssseq 3965 | If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.) |
| ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | eqrd 3966 | Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | eqri 3967 | Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | eqelssd 3968* | Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | ssid 3969 | Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| ⊢ 𝐴 ⊆ 𝐴 | ||
| Theorem | ssidd 3970 | Weakening of ssid 3969. (Contributed by BJ, 1-Sep-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | ||
| Theorem | ssv 3971 | Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| ⊢ 𝐴 ⊆ V | ||
| Theorem | sseq1 3972 | Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
| Theorem | sseq2 3973 | Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
| Theorem | sseq12 3974 | Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
| Theorem | sseq1i 3975 | An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | ||
| Theorem | sseq2i 3976 | An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) | ||
| Theorem | sseq12i 3977 | An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) | ||
| Theorem | sseq1d 3978 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
| Theorem | sseq2d 3979 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
| Theorem | sseq12d 3980 | An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
| Theorem | eqsstrd 3981 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrd 3982 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrd 3983 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrrd 3984 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrid 3985 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrid 3986 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrdi 3987 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrrdi 3988 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrid 3989 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | sseqtrrid 3990 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | eqsstrdi 3991 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrdi 3992 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstri 3993 | Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | eqsstrri 3994 | Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| ⊢ 𝐵 = 𝐴 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sseqtri 3995 | Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sseqtrri 3996 | Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | 3sstr3i 3997 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
| Theorem | 3sstr4i 3998 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
| Theorem | 3sstr3g 3999 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| Theorem | 3sstr4g 4000 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |