| Metamath
Proof Explorer Theorem List (p. 40 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rspc2vd 3901* | Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.) |
| ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) | ||
| Syntax | cdif 3902 | Extend class notation to include class difference (read: "𝐴 minus 𝐵"). |
| class (𝐴 ∖ 𝐵) | ||
| Syntax | cun 3903 | Extend class notation to include union of two classes (read: "𝐴 union 𝐵"). |
| class (𝐴 ∪ 𝐵) | ||
| Syntax | cin 3904 | Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵"). |
| class (𝐴 ∩ 𝐵) | ||
| Syntax | wss 3905 | Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴". When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵". |
| wff 𝐴 ⊆ 𝐵 | ||
| Syntax | wpss 3906 | Extend wff notation with proper subclass relation. |
| wff 𝐴 ⊊ 𝐵 | ||
| Theorem | difjust 3907* | Soundness justification theorem for df-dif 3908. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} | ||
| Definition | df-dif 3908* | Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. For example, ({1, 3} ∖ {1, 8}) = {3} (ex-dif 30385). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3910) and intersection (𝐴 ∩ 𝐵) (df-in 3912). Several notations are used in the literature; we chose the ∖ convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴 ∖ 𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | ||
| Theorem | unjust 3909* | Soundness justification theorem for df-un 3910. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} | ||
| Definition | df-un 3910* | Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∪ {1, 8}) = {1, 3, 8} (ex-un 30386). Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3908) and intersection (𝐴 ∩ 𝐵) (df-in 3912). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 4223. For union defined in terms of intersection, see dfun3 4229. (Contributed by NM, 23-Aug-1993.) |
| ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | ||
| Theorem | injust 3911* | Soundness justification theorem for df-in 3912. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
| Definition | df-in 3912* | Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30387). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3910) and difference (𝐴 ∖ 𝐵) (df-dif 3908). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4224 and dfin4 4231. For intersection defined in terms of union, see dfin3 4230. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | ||
| Theorem | dfin5 3913* | Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | ||
| Theorem | dfdif2 3914* | Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | ||
| Theorem | eldif 3915 | Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | ||
| Theorem | eldifd 3916 | If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3915. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | ||
| Theorem | eldifad 3917 | If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3915. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐵) | ||
| Theorem | eldifbd 3918 | If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3915. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | elneeldif 3919 | The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) | ||
| Theorem | velcomp 3920 | Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | elin 3921 | Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
| Definition | df-ss 3922* |
Define the subclass relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30389). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3960). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3925). For an
alternative definition, not requiring a dummy variable, see dfss2 3923.
Other possible definitions are given by dfss3 3926, dfss4 4222, sspss 4055,
ssequn1 4139, ssequn2 4142, sseqin2 4176, and ssdif0 4319.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11036 and 1ex 11130) or ℝ ( cf. df-r 11038 and reex 11119). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11119). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3923. (Revised by GG, 15-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss2 3923 | Alternate definition of the subclass relationship between two classes. Exercise 9 of [TakeutiZaring] p. 18. This was the original definition before df-ss 3922. (Contributed by NM, 27-Apr-1994.) Revise df-ss 3922. (Revised by GG, 15-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | ||
| Theorem | dfss 3924 | Variant of subclass definition dfss2 3923. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | ||
| Definition | df-pss 3925 | Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30390). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4056). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3922). Other possible definitions are given by dfpss2 4041 and dfpss3 4042. (Contributed by NM, 7-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | ||
| Theorem | dfss3 3926* | Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | dfss6 3927* | Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | ||
| Theorem | dfssf 3928 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2370. (Revised by GG, 19-May-2023.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss3f 3929 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | nfss 3930 | If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 | ||
| Theorem | ssel 3931 | Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 27-May-2024.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | ssel2 3932 | Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseli 3933 | Membership implication from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
| Theorem | sselii 3934 | Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 ∈ 𝐴 ⇒ ⊢ 𝐶 ∈ 𝐵 | ||
| Theorem | sselid 3935 | Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | sseld 3936 | Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | sselda 3937 | Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseldd 3938 | Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | ssneld 3939 | If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) | ||
| Theorem | ssneldd 3940 | If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
| Theorem | ssriv 3941* | Inference based on subclass definition. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | ssrd 3942 | Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ssrdv 3943* | Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | sstr2 3944 | Transitivity of subclass relationship. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
| Theorem | sstr2OLD 3945 | Obsolete version of sstr2 3944 as of 19-May-2025. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | ||
| Theorem | sstr 3946 | Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstri 3947 | Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sstrd 3948 | Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstrid 3949 | Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sstrdi 3950 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sylan9ss 3951 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) | ||
| Theorem | sylan9ssr 3952 | A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐵 ⊆ 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqss 3953 | The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | ||
| Theorem | eqssi 3954 | Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | eqssd 3955 | Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | sssseq 3956 | If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.) |
| ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | eqrd 3957 | Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | eqri 3958 | Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | eqelssd 3959* | Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | ssid 3960 | Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| ⊢ 𝐴 ⊆ 𝐴 | ||
| Theorem | ssidd 3961 | Weakening of ssid 3960. (Contributed by BJ, 1-Sep-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | ||
| Theorem | ssv 3962 | Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| ⊢ 𝐴 ⊆ V | ||
| Theorem | sseq1 3963 | Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
| Theorem | sseq2 3964 | Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
| Theorem | sseq12 3965 | Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
| Theorem | sseq1i 3966 | An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | ||
| Theorem | sseq2i 3967 | An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) | ||
| Theorem | sseq12i 3968 | An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) | ||
| Theorem | sseq1d 3969 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | ||
| Theorem | sseq2d 3970 | An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | ||
| Theorem | sseq12d 3971 | An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | ||
| Theorem | eqsstrd 3972 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrd 3973 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrd 3974 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrrd 3975 | Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrid 3976 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrid 3977 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrdi 3978 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrrdi 3979 | A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | sseqtrid 3980 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | sseqtrrid 3981 | Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
| Theorem | eqsstrdi 3982 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstrrdi 3983 | A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
| Theorem | eqsstri 3984 | Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | eqsstrri 3985 | Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| ⊢ 𝐵 = 𝐴 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sseqtri 3986 | Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | sseqtrri 3987 | Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
| Theorem | 3sstr3i 3988 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
| Theorem | 3sstr4i 3989 | Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ⊆ 𝐷 | ||
| Theorem | 3sstr3g 3990 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| Theorem | 3sstr4g 3991 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| Theorem | 3sstr3d 3992 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| Theorem | 3sstr4d 3993 | Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | ||
| Theorem | eqimssd 3994 | Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | eqimsscd 3995 | Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | eqimss 3996 | Equality implies inclusion. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | ||
| Theorem | eqimss2 3997 | Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) | ||
| Theorem | eqimssi 3998 | Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | eqimss2i 3999 | Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
| Theorem | nssne1 4000 | Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ⊆ 𝐶) → 𝐵 ≠ 𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |