MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtru Structured version   Visualization version   GIF version

Theorem dtru 5391
Description: Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2028. The same comments and revision history concerning axiom usage as in exneq 5390 apply. See dtruALT 5338 and dtruALT2 5320 for alternate proofs avoiding ax-pr 5382. (Contributed by NM, 7-Nov-2006.) Extract exneq 5390 as an intermediate result. (Revised by BJ, 2-Jan-2025.)
Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
StepHypRef Expression
1 exneq 5390 . 2 𝑥 ¬ 𝑥 = 𝑦
2 exnal 1827 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
31, 2mpbi 230 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780
This theorem is referenced by:  brprcneu  6830  zfcndpow  10545
  Copyright terms: Public domain W3C validator