MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtru Structured version   Visualization version   GIF version

Theorem dtru 5288
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both 𝑥 and 𝑦 (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 2032.

This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2709 or ax-sep 5218. See dtruALT 5306 for a shorter proof using these axioms.

The proof makes use of dummy variables 𝑧 and 𝑤 which do not appear in the final theorem. They must be distinct from each other and from 𝑥 and 𝑦. In other words, if we were to substitute 𝑥 for 𝑧 throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2372. (Revised by Gino Giotto, 5-Sep-2023.) Avoid ax-12 2173. (Revised by Rohan Ridenour, 9-Oct-2024.)

Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el 5287 . . . 4 𝑤 𝑥𝑤
2 ax-nul 5225 . . . . 5 𝑧𝑥 ¬ 𝑥𝑧
3 elequ1 2115 . . . . . . 7 (𝑥 = 𝑤 → (𝑥𝑧𝑤𝑧))
43notbid 317 . . . . . 6 (𝑥 = 𝑤 → (¬ 𝑥𝑧 ↔ ¬ 𝑤𝑧))
54spw 2038 . . . . 5 (∀𝑥 ¬ 𝑥𝑧 → ¬ 𝑥𝑧)
62, 5eximii 1840 . . . 4 𝑧 ¬ 𝑥𝑧
7 exdistrv 1960 . . . 4 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) ↔ (∃𝑤 𝑥𝑤 ∧ ∃𝑧 ¬ 𝑥𝑧))
81, 6, 7mpbir2an 707 . . 3 𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧)
9 ax9v2 2121 . . . . . 6 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
109com12 32 . . . . 5 (𝑥𝑤 → (𝑤 = 𝑧𝑥𝑧))
1110con3dimp 408 . . . 4 ((𝑥𝑤 ∧ ¬ 𝑥𝑧) → ¬ 𝑤 = 𝑧)
12112eximi 1839 . . 3 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) → ∃𝑤𝑧 ¬ 𝑤 = 𝑧)
13 equequ2 2030 . . . . . . 7 (𝑧 = 𝑦 → (𝑤 = 𝑧𝑤 = 𝑦))
1413notbid 317 . . . . . 6 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦))
15 ax7v1 2014 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
1615con3d 152 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦))
1716spimevw 1999 . . . . . 6 𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
1814, 17syl6bi 252 . . . . 5 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
19 ax7v1 2014 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
2019con3d 152 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦))
2120spimevw 1999 . . . . . 6 𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
2221a1d 25 . . . . 5 𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
2318, 22pm2.61i 182 . . . 4 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
2423exlimivv 1936 . . 3 (∃𝑤𝑧 ¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
258, 12, 24mp2b 10 . 2 𝑥 ¬ 𝑥 = 𝑦
26 exnal 1830 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2725, 26mpbi 229 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  dtrucor  5289  dvdemo1  5291  nfnid  5293  axc16b  5307  eunex  5308  brprcneu  6747  zfcndpow  10303
  Copyright terms: Public domain W3C validator