MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel2 Structured version   Visualization version   GIF version

Theorem dveel2 2453
Description: Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2113 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
21dvelimv 2443 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2363
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778
This theorem is referenced by:  axc14  2454
  Copyright terms: Public domain W3C validator