Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel2 Structured version   Visualization version   GIF version

Theorem dveel2 2474
 Description: Quantifier introduction when one pair of variables is distinct. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2126 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
21dvelimv 2463 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786 This theorem is referenced by:  axc14  2475
 Copyright terms: Public domain W3C validator