![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvelimv | Structured version Visualization version GIF version |
Description: Similar to dvelim 2459 with first hypothesis replaced by a distinct variable condition. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2351 for a version requiring fewer axioms. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimv.1 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimv | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | dvelimv.1 | . 2 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | dvelim 2459 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: dveeq2ALT 2462 dveel1 2469 dveel2 2470 rgen2a 3379 |
Copyright terms: Public domain | W3C validator |