MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelimv Structured version   Visualization version   GIF version

Theorem dvelimv 2445
Description: Similar to dvelim 2444 with first hypothesis replaced by a distinct variable condition. Usage of this theorem is discouraged because it depends on ax-13 2365. Check out dvelimhw 2335 for a version requiring fewer axioms. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
dvelimv.1 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimv (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dvelimv
StepHypRef Expression
1 ax-5 1905 . 2 (𝜑 → ∀𝑥𝜑)
2 dvelimv.1 . 2 (𝑧 = 𝑦 → (𝜑𝜓))
31, 2dvelim 2444 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778
This theorem is referenced by:  dveeq2ALT  2447  dveel1  2454  dveel2  2455  rgen2a  3361
  Copyright terms: Public domain W3C validator