MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel1 Structured version   Visualization version   GIF version

Theorem dveel1 2460
Description: Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
dveel1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ1 2116 . 2 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
21dvelimv 2451 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784
This theorem is referenced by:  distel  35786
  Copyright terms: Public domain W3C validator