| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dveel1 | Structured version Visualization version GIF version | ||
| Description: Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dveel1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ1 2114 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
| 2 | 1 | dvelimv 2455 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: distel 35763 |
| Copyright terms: Public domain | W3C validator |