Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dveel1 | Structured version Visualization version GIF version |
Description: Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dveel1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2117 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
2 | 1 | dvelimv 2454 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2374 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 |
This theorem is referenced by: distel 33773 |
Copyright terms: Public domain | W3C validator |