MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq1 Structured version   Visualization version   GIF version

Theorem dveeq1 2380
Description: Quantifier introduction when one pair of variables is distinct. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) Remove dependency on ax-11 2156. (Revised by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq1
StepHypRef Expression
1 nfeqf1 2379 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
21nf5rd 2192 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfeqf  2381  axc11n  2426
  Copyright terms: Public domain W3C validator