![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dveeq1 | Structured version Visualization version GIF version |
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) Remove dependency on ax-11 2126. (Revised by Wolf Lammen, 8-Sep-2018.) |
Ref | Expression |
---|---|
dveeq1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqf1 2352 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
2 | 1 | nf5rd 2161 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 |
This theorem is referenced by: nfeqf 2354 axc11n 2405 |
Copyright terms: Public domain | W3C validator |